《鑲嵌》的教學(xué)反思
上周教學(xué)了多邊形鑲嵌,他是在學(xué)習了多邊形內角和、外角和的基礎上展示的教學(xué)內容,主要是對前面所學(xué)知識的應用。這一知識點(diǎn)與實(shí)際生活聯(lián)系緊密,運用多邊形內角的知識解問(wèn)題,學(xué)生興趣濃厚,教學(xué)效果較好,F對這一教學(xué)做以下反思。
一、教學(xué)中應充分創(chuàng )設情境,激發(fā)學(xué)生學(xué)習興趣。興趣是最好的老師,只有充分調動(dòng)學(xué)生的學(xué)習興趣和學(xué)習熱情,教學(xué)才會(huì )輕松,學(xué)習才會(huì )主動(dòng)學(xué)習和探索,學(xué)習的生成才會(huì )更深入有效。教學(xué)中充分利用身邊的實(shí)例、圖片展示生活中的鑲嵌圖形,讓學(xué)生從大量的圖片及圖形設計中感受鑲嵌的美妙。
二、動(dòng)手剪一剪、拼一拼,調動(dòng)學(xué)生主動(dòng)探索的熱情。課前給學(xué)生布置任務(wù),剪一些規定尺寸的`剪紙片(單獨的多邊形或正多邊形),然后以小組為單位去拼一拼。學(xué)生通過(guò)動(dòng)手剪圖形,加深對多邊形圖形的了解,拼圖后學(xué)生發(fā)現有不同的結果,學(xué)生會(huì )互相交流,碰撞出不同的思想火花,為學(xué)習新課起到很好的自學(xué)效果,學(xué)生的探索欲望,學(xué)習熱情得到釋放。
三、學(xué)生觀(guān)察、歸納總結。
1、單獨一個(gè)圖形。單獨圖形如任意三角形、四邊形都能夠密鋪;
2、兩種圖形組合。①3個(gè)正三角形+2個(gè)正四邊形;②2個(gè)正三角形+2個(gè)正六邊形或4個(gè)正三角形+1個(gè)正六邊形;③1個(gè)正三角形+2個(gè)正十二邊形④1個(gè)正四邊形+2個(gè)正八邊形。正五邊形+正十邊形也能?chē)@某一點(diǎn)形成一個(gè)周角,但只能滿(mǎn)足局部密鋪,沒(méi)法大面積密鋪,所以這種組成很特殊,但不能成立。
3、三種圖形組合。①1個(gè)正三角形+2個(gè)正四邊形+1個(gè)正六邊形;②1個(gè)正四邊形+1個(gè)正六邊形+11個(gè)正十二邊形;③2個(gè)正三角形+1個(gè)正四邊形+1個(gè)正十二邊形。
三種以上正多邊形圖形由于邊角較多,受空間表面大小影響,所以無(wú)法進(jìn)行密鋪。
四、探求拼圖規律,引入方程思想。如在探索多處正多邊形拼圖時(shí)及時(shí)引入方程,有效解決多邊形數量問(wèn)題。如正三角形+正四邊形圖形組合時(shí),一個(gè)正三角形一個(gè)內角為60度,一個(gè)正四邊形內角為90度,于日設需正三角形個(gè)數為X個(gè),正四邊形個(gè)數為y個(gè),得:60X+90y=360,解得X=3,y=2,如果為正整數,即需要三個(gè)正三角形和二個(gè)正四邊形來(lái)拼接(邊長(cháng)相等)。不管是哪兩種或三種圖形拼接都可以采用這個(gè)方法,得出一個(gè)二元一次議程或三元一次方程,解得結果為正整數即滿(mǎn)足要求。
五、畫(huà)圖感受組形組合的奇妙。課后布置學(xué)生畫(huà)圖或圖形設計的作業(yè),讓學(xué)生通過(guò)畫(huà)圖進(jìn)一步感受圖形組合的奇妙,加深對所學(xué)知識的運用,提高學(xué)生創(chuàng )新思維的設計的靈感,提高學(xué)生審美情趣。
【《鑲嵌》的教學(xué)反思】相關(guān)文章:
《葉鑲嵌》教學(xué)反思01-07
葉鑲嵌教學(xué)反思01-06
《葉鑲嵌》的教學(xué)反思06-11
葉鑲嵌的教學(xué)反思范文02-09
《鑲嵌》教學(xué)設計02-14
《生物膜的流動(dòng)鑲嵌模型》的教學(xué)反思12-03
關(guān)于寫(xiě)鑲嵌的造句04-05
平面鑲嵌說(shuō)課稿范文04-15
板塊鑲嵌模型的總結03-20