高一數學(xué)知識點(diǎn)總結(匯編15篇)
總結就是把一個(gè)時(shí)間段取得的成績(jì)、存在的問(wèn)題及得到的經(jīng)驗和教訓進(jìn)行一次全面系統的總結的書(shū)面材料,它可以幫助我們有尋找學(xué)習和工作中的規律,不如靜下心來(lái)好好寫(xiě)寫(xiě)總結吧?偨Y怎么寫(xiě)才不會(huì )千篇一律呢?下面是小編收集整理的高一數學(xué)知識點(diǎn)總結,歡迎閱讀與收藏。
高一數學(xué)知識點(diǎn)總結1
函數圖象知識歸納
(1)定義:在平面直角坐標系中,以函數y=f(x),(x∈A)中的x為橫坐標,函數值y為縱坐標的點(diǎn)P(x,y)的函數C,叫做函數y=f(x),(x∈A)的圖象.C上每一點(diǎn)的坐標(x,y)均滿(mǎn)足函數關(guān)系y=f(x),反過(guò)來(lái),以滿(mǎn)足y=f(x)的每一組有序實(shí)數對x、y為坐標的點(diǎn)(x,y),均在C上.
(2)畫(huà)法
A、描點(diǎn)法:
B、圖象變換法
常用變換方法有三種
1)平移變換
2)伸縮變換
3)對稱(chēng)變換
4.高中數學(xué)函數區間的概念
(1)函數區間的分類(lèi):開(kāi)區間、閉區間、半開(kāi)半閉區間
(2)無(wú)窮區間
5.映射
一般地,設A、B是兩個(gè)非空的函數,如果按某一個(gè)確定的對應法則f,使對于函數A中的任意一個(gè)元素x,在函數B中都有確定的元素y與之對應,那么就稱(chēng)對應f:AB為從函數A到函數B的一個(gè)映射。記作“f(對應關(guān)系):A(原象)B(象)”
對于映射f:A→B來(lái)說(shuō),則應滿(mǎn)足:
(1)函數A中的每一個(gè)元素,在函數B中都有象,并且象是的;
(2)函數A中不同的元素,在函數B中對應的象可以是同一個(gè);
(3)不要求函數B中的每一個(gè)元素在函數A中都有原象。
6.高中數學(xué)函數之分段函數
(1)在定義域的不同部分上有不同的解析表達式的函數。
(2)各部分的自變量的取值情況.
(3)分段函數的定義域是各段定義域的交集,值域是各段值域的并集.
補充:復合函數
如果y=f(u)(u∈M),u=g(x)(x∈A),則y=f[g(x)]=F(x)(x∈A)稱(chēng)為f、g的復合函數。
高一數學(xué)知識點(diǎn)總結2
1、柱、錐、臺、球的結構特征
(1)棱柱:
定義:有兩個(gè)面互相平行,其余各面都是四邊形,且每相鄰兩個(gè)四邊形的公共邊都互相平行,由這些面所圍成的幾何體。
分類(lèi):以底面多邊形的邊數作為分類(lèi)的標準分為三棱柱、四棱柱、五棱柱等。
表示:用各頂點(diǎn)字母,如五棱柱或用對角線(xiàn)的端點(diǎn)字母,如五棱柱。
幾何特征:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行于底面的截面是與底面全等的多邊形。
(2)棱錐
定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,由這些面所圍成的幾何體。
分類(lèi):以底面多邊形的邊數作為分類(lèi)的標準分為三棱錐、四棱錐、五棱錐等
表示:用各頂點(diǎn)字母,如五棱錐
幾何特征:側面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方。
(3)棱臺:
定義:用一個(gè)平行于棱錐底面的平面去截棱錐,截面和底面之間的部分。
分類(lèi):以底面多邊形的邊數作為分類(lèi)的標準分為三棱態(tài)、四棱臺、五棱臺等
表示:用各頂點(diǎn)字母,如五棱臺
幾何特征:①上下底面是相似的平行多邊形②側面是梯形③側棱交于原棱錐的頂點(diǎn)
(4)圓柱:
定義:以矩形的一邊所在的直線(xiàn)為軸旋轉,其余三邊旋轉所成的曲面所圍成的幾何體。
幾何特征:①底面是全等的圓;②母線(xiàn)與軸平行;③軸與底面圓的半徑垂直;④側面展開(kāi)圖是一個(gè)矩形。
(5)圓錐:
定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成的曲面所圍成的幾何體。
幾何特征:①底面是一個(gè)圓;②母線(xiàn)交于圓錐的頂點(diǎn);③側面展開(kāi)圖是一個(gè)扇形。
(6)圓臺:
定義:用一個(gè)平行于圓錐底面的平面去截圓錐,截面和底面之間的部分
幾何特征:①上下底面是兩個(gè)圓;②側面母線(xiàn)交于原圓錐的頂點(diǎn);③側面展開(kāi)圖是一個(gè)弓形。
(7)球體:
定義:以半圓的直徑所在直線(xiàn)為旋轉軸,半圓面旋轉一周形成的幾何體
幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑。
2、空間幾何體的三視圖
定義三視圖:正視圖(光線(xiàn)從幾何體的前面向后面正投影);側視圖(從左向右)、俯視圖(從上向下)
注:正視圖反映了物體上下、左右的位置關(guān)系,即反映了物體的高度和長(cháng)度;
俯視圖反映了物體左右、前后的位置關(guān)系,即反映了物體的長(cháng)度和寬度;
側視圖反映了物體上下、前后的位置關(guān)系,即反映了物體的高度和寬度。
3、空間幾何體的直觀(guān)圖——斜二測畫(huà)法
斜二測畫(huà)法特點(diǎn):
、僭瓉(lái)與x軸平行的線(xiàn)段仍然與x平行且長(cháng)度不變;
、谠瓉(lái)與y軸平行的線(xiàn)段仍然與y平行,長(cháng)度為原來(lái)的一半。
高一數學(xué)知識點(diǎn)總結3
冪函數定義:
形如y=x^a(a為常數)的函數,即以底數為自變量?jì)鐬橐蜃兞,指數為常量的函數稱(chēng)為冪函數。
定義域和值域:
當a為不同的數值時(shí),冪函數的定義域的不同情況如下:如果a為任意實(shí)數,則函數的定義域為大于0的所有實(shí)數;如果a為負數,則x肯定不能為0,不過(guò)這時(shí)函數的定義域還必須根[據q的奇偶性來(lái)確定,即如果同時(shí)q為偶數,則x不能小于0,這時(shí)函數的定義域為大于0的所有實(shí)數;如果同時(shí)q為奇數,則函數的定義域為不等于0的所有實(shí)數。當x為不同的數值時(shí),冪函數的值域的不同情況如下:在x大于0時(shí),函數的值域總是大于0的實(shí)數。在x小于0時(shí),則只有同時(shí)q為奇數,函數的值域為非零的實(shí)數。而只有a為正數,0才進(jìn)入函數的值域
冪函數性質(zhì):
對于a的取值為非零有理數,有必要分成幾種情況來(lái)討論各自的特性:
首先我們知道如果a=p/q,q和p都是整數,則x^(p/q)=q次根號(x的p次方),如果q是奇數,函數的定義域是R,如果q是偶數,函數的定義域是[0,+∞)。當指數n是負整數時(shí),設a=-k,則x=1/(x^k),顯然x≠0,函數的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來(lái)源于兩點(diǎn),一是有可能作為分母而不能是0,一是有可能在偶數次的根號下而不能為負數,那么我們就可以知道:
排除了為0與負數兩種可能,即對于x>0,則a可以是任意實(shí)數;
排除了為0這種可能,即對于x
排除了為負數這種可能,即對于x為大于且等于0的所有實(shí)數,a就不能是負數。
總結起來(lái),就可以得到當a為不同的數值時(shí),冪函數的定義域的不同情況如下:
如果a為任意實(shí)數,則函數的定義域為大于0的所有實(shí)數;
如果a為負數,則x肯定不能為0,不過(guò)這時(shí)函數的定義域還必須根據q的奇偶性來(lái)確定,即如果同時(shí)q為偶數,則x不能小于0,這時(shí)函數的定義域為大于0的所有實(shí)數;如果同時(shí)q為奇數,則函數的定義域為不等于0的所有實(shí)數。
在x大于0時(shí),函數的值域總是大于0的實(shí)數。
在x小于0時(shí),則只有同時(shí)q為奇數,函數的值域為非零的實(shí)數。
而只有a為正數,0才進(jìn)入函數的值域。
由于x大于0是對a的任意取值都有意義的,因此下面給出冪函數在第一象限的各自情況.
可以看到:
(1)所有的圖形都通過(guò)(1,1)這點(diǎn)。
(2)當a大于0時(shí),冪函數為單調遞增的,而a小于0時(shí),冪函數為單調遞減函數。
(3)當a大于1時(shí),冪函數圖形下凹;當a小于1大于0時(shí),冪函數圖形上凸。
(4)當a小于0時(shí),a越小,圖形傾斜程度越大。
(5)a大于0,函數過(guò)(0,0);a小于0,函數不過(guò)(0,0)點(diǎn)。
(6)顯然冪函數無(wú)界。
高一數學(xué)知識點(diǎn)總結4
1.多面體的結構特征
(1)棱柱有兩個(gè)面相互平行,其余各面都是平行四邊形,每相鄰兩個(gè)四邊形的公共邊平行。
正棱柱:側棱垂直于底面的棱柱叫做直棱柱,底面是正多邊形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多邊形,側棱垂直于底面,側面是矩形。
(2)棱錐的底面是任意多邊形,側面是有一個(gè)公共頂點(diǎn)的三角形。
正棱錐:底面是正多邊形,頂點(diǎn)在底面的射影是底面正多邊形的中心的棱錐叫做正棱錐.特別地,各棱均相等的正三棱錐叫正四面體.反過(guò)來(lái),正棱錐的底面是正多邊形,且頂點(diǎn)在底面的射影是底面正多邊形的中心。
(3)棱臺可由平行于底面的平面截棱錐得到,其上下底面是相似多邊形。
2.旋轉體的結構特征
(1)圓柱可以由矩形繞一邊所在直線(xiàn)旋轉一周得到.
(2)圓錐可以由直角三角形繞一條直角邊所在直線(xiàn)旋轉一周得到.
(3)圓臺可以由直角梯形繞直角腰所在直線(xiàn)旋轉一周或等腰梯形繞上下底面中心所在直線(xiàn)旋轉半周得到,也可由平行于底面的平面截圓錐得到。
(4)球可以由半圓面繞直徑旋轉一周或圓面繞直徑旋轉半周得到。
3.空間幾何體的三視圖
空間幾何體的三視圖是用平行投影得到,這種投影下,與投影面平行的平面圖形留下的影子,與平面圖形的形狀和大小是全等和相等的,三視圖包括正視圖、側視圖、俯視圖。
三視圖的長(cháng)度特征:“長(cháng)對正,寬相等,高平齊”,即正視圖和側視圖一樣高,正視圖和俯視圖一樣長(cháng),側視圖和俯視圖一樣寬.若相鄰兩物體的表面相交,表面的交線(xiàn)是它們的分界線(xiàn),在三視圖中,要注意實(shí)、虛線(xiàn)的畫(huà)法。
4.空間幾何體的直觀(guān)圖
空間幾何體的直觀(guān)圖常用斜二測畫(huà)法來(lái)畫(huà),基本步驟是:
(1)畫(huà)幾何體的底面
在已知圖形中取互相垂直的`x軸、y軸,兩軸相交于點(diǎn)O,畫(huà)直觀(guān)圖時(shí),把它們畫(huà)成對應的x′軸、y′軸,兩軸相交于點(diǎn)O′,且使∠x(chóng)′O′y′=45°或135°,已知圖形中平行于x軸、y軸的線(xiàn)段,在直觀(guān)圖中平行于x′軸、y′軸.已知圖形中平行于x軸的線(xiàn)段,在直觀(guān)圖中長(cháng)度不變,平行于y軸的線(xiàn)段,長(cháng)度變?yōu)樵瓉?lái)的一半。
(2)畫(huà)幾何體的高
在已知圖形中過(guò)O點(diǎn)作z軸垂直于xOy平面,在直觀(guān)圖中對應的z′軸,也垂直于x′O′y′平面,已知圖形中平行于z軸的線(xiàn)段,在直觀(guān)圖中仍平行于z′軸且長(cháng)度不變。
高一數學(xué)知識點(diǎn)總結5
考點(diǎn)要求:
1、幾何體的展開(kāi)圖、幾何體的三視圖仍是高考的熱點(diǎn)。
2、三視圖和其他的知識點(diǎn)結合在一起命題是新教材中考查學(xué)生三視圖及幾何量計算的趨勢。
3、重點(diǎn)掌握以三視圖為命題背景,研究空間幾何體的結構特征的題型。
4、要熟悉一些典型的幾何體模型,如三棱柱、長(cháng)(正)方體、三棱錐等幾何體的三視圖。
知識結構:
1、多面體的結構特征
。1)棱柱有兩個(gè)面相互平行,其余各面都是平行四邊形,每相鄰兩個(gè)四邊形的公共邊平行。
正棱柱:側棱垂直于底面的棱柱叫做直棱柱,底面是正多邊形的直棱柱叫做正棱柱。反之,正棱柱的底面是正多邊形,側棱垂直于底面,側面是矩形。
。2)棱錐的底面是任意多邊形,側面是有一個(gè)公共頂點(diǎn)的三角形。
正棱錐:底面是正多邊形,頂點(diǎn)在底面的射影是底面正多邊形的中心的棱錐叫做正棱錐。特別地,各棱均相等的正三棱錐叫正四面體。反過(guò)來(lái),正棱錐的底面是正多邊形,且頂點(diǎn)在底面的射影是底面正多邊形的中心。
。3)棱臺可由平行于底面的平面截棱錐得到,其上下底面是相似多邊形。
2、旋轉體的結構特征
。1)圓柱可以由矩形繞一邊所在直線(xiàn)旋轉一周得到。
。2)圓錐可以由直角三角形繞一條直角邊所在直線(xiàn)旋轉一周得到。
。3)圓臺可以由直角梯形繞直角腰所在直線(xiàn)旋轉一周或等腰梯形繞上下底面中心所在直線(xiàn)旋轉半周得到,也可由平行于底面的平面截圓錐得到。
。4)球可以由半圓面繞直徑旋轉一周或圓面繞直徑旋轉半周得到。
3、空間幾何體的三視圖
空間幾何體的三視圖是用平行投影得到,這種投影下,與投影面平行的平面圖形留下的影子,與平面圖形的形狀和大小是全等和相等的,三視圖包括正視圖、側視圖、俯視圖。
三視圖的長(cháng)度特征:“長(cháng)對正,寬相等,高平齊”,即正視圖和側視圖一樣高,正視圖和俯視圖一樣長(cháng),側視圖和俯視圖一樣寬。若相鄰兩物體的表面相交,表面的交線(xiàn)是它們的分界線(xiàn),在三視圖中,要注意實(shí)、虛線(xiàn)的畫(huà)法。
4、空間幾何體的直觀(guān)圖
空間幾何體的直觀(guān)圖常用斜二測畫(huà)法來(lái)畫(huà),基本步驟是:
。1)畫(huà)幾何體的底面
在已知圖形中取互相垂直的x軸、y軸,兩軸相交于點(diǎn)O,畫(huà)直觀(guān)圖時(shí),把它們畫(huà)成對應的x′軸、y′軸,兩軸相交于點(diǎn)O′,且使∠x(chóng)′O′y′=45°或135°,已知圖形中平行于x軸、y軸的線(xiàn)段,在直觀(guān)圖中平行于x′軸、y′軸。已知圖形中平行于x軸的線(xiàn)段,在直觀(guān)圖中長(cháng)度不變,平行于y軸的線(xiàn)段,長(cháng)度變?yōu)樵瓉?lái)的一半。
。2)畫(huà)幾何體的高
在已知圖形中過(guò)O點(diǎn)作z軸垂直于xOy平面,在直觀(guān)圖中對應的z′軸,也垂直于x′O′y′平面,已知圖形中平行于z軸的線(xiàn)段,在直觀(guān)圖中仍平行于z′軸且長(cháng)度不變。
高一數學(xué)知識點(diǎn)總結6
1.函數的奇偶性
(1)若f(x)是偶函數,那么f(x)=f(-x);
(2)若f(x)是奇函數,0在其定義域內,則f(0)=0(可用于求參數);
(3)判斷函數奇偶性可用定義的等價(jià)形式:f(x)±f(-x)=0或(f(x)≠0);
(4)若所給函數的解析式較為復雜,應先化簡(jiǎn),再判斷其奇偶性;
(5)奇函數在對稱(chēng)的單調區間內有相同的單調性;偶函數在對稱(chēng)的單調區間內有相反的單調性;
2.復合函數的有關(guān)問(wèn)題
(1)復合函數定義域求法:若已知的定義域為[a,b],其復合函數f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求f(x)的定義域,相當于x∈[a,b]時(shí),求g(x)的值域(即f(x)的定義域);研究函數的問(wèn)題一定要注意定義域優(yōu)先的原則。
(2)復合函數的單調性由“同增異減”判定;
3.函數圖像(或方程曲線(xiàn)的對稱(chēng)性)
(1)證明函數圖像的對稱(chēng)性,即證明圖像上任意點(diǎn)關(guān)于對稱(chēng)中心(對稱(chēng)軸)的對稱(chēng)點(diǎn)仍在圖像上;
(2)證明圖像C1與C2的對稱(chēng)性,即證明C1上任意點(diǎn)關(guān)于對稱(chēng)中心(對稱(chēng)軸)的對稱(chēng)點(diǎn)仍在C2上,反之亦然;
(3)曲線(xiàn)C1:f(x,y)=0,關(guān)于y=x+a(y=-x+a)的對稱(chēng)曲線(xiàn)C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);
(4)曲線(xiàn)C1:f(x,y)=0關(guān)于點(diǎn)(a,b)的對稱(chēng)曲線(xiàn)C2方程為:f(2a-x,2b-y)=0;
(5)若函數y=f(x)對x∈R時(shí),f(a+x)=f(a-x)恒成立,則y=f(x)圖像關(guān)于直線(xiàn)x=a對稱(chēng),高中數學(xué);
(6)函數y=f(x-a)與y=f(b-x)的圖像關(guān)于直線(xiàn)x=對稱(chēng);
高一數學(xué)知識點(diǎn)總結7
圓的方程定義:
圓的標準方程(x—a)2+(y—b)2=r2中,有三個(gè)參數a、b、r,即圓心坐標為(a,b),只要求出a、b、r,這時(shí)圓的方程就被確定,因此確定圓方程,須三個(gè)獨立條件,其中圓心坐標是圓的定位條件,半徑是圓的定形條件。
直線(xiàn)和圓的位置關(guān)系:
1、直線(xiàn)和圓位置關(guān)系的判定方法一是方程的觀(guān)點(diǎn),即把圓的方程和直線(xiàn)的方程聯(lián)立成方程組,利用判別式Δ來(lái)討論位置關(guān)系。
、佴>0,直線(xiàn)和圓相交。②Δ=0,直線(xiàn)和圓相切。③Δ<0,直線(xiàn)和圓相離。
方法二是幾何的觀(guān)點(diǎn),即把圓心到直線(xiàn)的距離d和半徑R的大小加以比較。
、賒R,直線(xiàn)和圓相離。
2、直線(xiàn)和圓相切,這類(lèi)問(wèn)題主要是求圓的切線(xiàn)方程。求圓的切線(xiàn)方程主要可分為已知斜率k或已知直線(xiàn)上一點(diǎn)兩種情況,而已知直線(xiàn)上一點(diǎn)又可分為已知圓上一點(diǎn)和圓外一點(diǎn)兩種情況。
3、直線(xiàn)和圓相交,這類(lèi)問(wèn)題主要是求弦長(cháng)以及弦的中點(diǎn)問(wèn)題。
切線(xiàn)的性質(zhì)
、艌A心到切線(xiàn)的距離等于圓的半徑;
、七^(guò)切點(diǎn)的半徑垂直于切線(xiàn);
、墙(jīng)過(guò)圓心,與切線(xiàn)垂直的直線(xiàn)必經(jīng)過(guò)切點(diǎn);
、冉(jīng)過(guò)切點(diǎn),與切線(xiàn)垂直的直線(xiàn)必經(jīng)過(guò)圓心;
當一條直線(xiàn)滿(mǎn)足
。1)過(guò)圓心;
。2)過(guò)切點(diǎn);
。3)垂直于切線(xiàn)三個(gè)性質(zhì)中的兩個(gè)時(shí),第三個(gè)性質(zhì)也滿(mǎn)足。
切線(xiàn)的判定定理
經(jīng)過(guò)半徑的外端點(diǎn)并且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn)。
切線(xiàn)長(cháng)定理
從圓外一點(diǎn)作圓的兩條切線(xiàn),兩切線(xiàn)長(cháng)相等,圓心與這一點(diǎn)的連線(xiàn)平分兩條切線(xiàn)的夾角。
高一數學(xué)知識點(diǎn)總結8
一、集合有關(guān)概念
1、集合的含義:某些指定的對象集在一起就成為一個(gè)集合,其中每一個(gè)對象叫元素。
2、集合的中元素的三個(gè)特性:
1.元素的確定性;2.元素的互異性;3.元素的無(wú)序性
說(shuō)明:(1)對于一個(gè)給定的集合,集合中的元素是確定的,任何一個(gè)對象或者是或者不是這個(gè)給定的集合的元素。
(2)任何一個(gè)給定的集合中,任何兩個(gè)元素都是不同的對象,相同的對象歸入一個(gè)集合時(shí),僅算一個(gè)元素。
(3)集合中的元素是平等的,沒(méi)有先后順序,因此判定兩個(gè)集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。
(4)集合元素的三個(gè)特性使集合本身具有了確定性和整體性。
3、集合的表示:{…}如{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}
1.用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
2.集合的表示方法:列舉法與描述法。
二、集合間的基本關(guān)系
1.“包含”關(guān)系—子集
注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA
2.“相等”關(guān)系(5≥5,且5≤5,則5=5)
實(shí)例:設A={x|x2-1=0}B={-1,1}“元素相同”
結論:對于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí),集合B的任何一個(gè)元素都是集合A的元素,我們就說(shuō)集合A等于集合B,即:A=B
、偃魏我粋(gè)集合是它本身的子集。AíA
、谡孀蛹:如果AíB,且A1B那就說(shuō)集合A是集合B的真子集,記作AB(或BA)
、廴绻鸄íB,BíC,那么AíC
、苋绻鸄íB同時(shí)BíA那么A=B
3.不含任何元素的集合叫做空集,記為Φ
規定:空集是任何集合的子集,空集是任何非空集合的真子集。
三、集合的運算
1.交集的定義:一般地,由所有屬于A(yíng)且屬于B的元素所組成的集合,叫做A,B的交集.
記作A∩B(讀作”A交B”),即A∩B={x|x∈A,且x∈B}.
2、并集的定義:一般地,由所有屬于集合A或屬于集合B的元素所組成的集合,叫做A,B的并集。記作:A∪B(讀作”A并B”),即A∪B={x|x∈A,或x∈B}.
3、交集與并集的性質(zhì):A∩A=A,A∩φ=φ,A∩B=B∩A,A∪A=A,A∪φ=A,A∪B=B∪A.
高一數學(xué)知識點(diǎn)總結9
一:函數模型及其應用
本節主要包括函數的模型、函數的應用等知識點(diǎn)。主要是理解函數解應用題的一般步驟靈活利用函數解答實(shí)際應用題。
1、常見(jiàn)的函數模型有一次函數模型、二次函數模型、指數函數模型、對數函數模型、分段函數模型等。
2、用函數解應用題的基本步驟是:
。1)閱讀并且理解題意。(關(guān)鍵是數據、字母的實(shí)際意義);
。2)設量建模;
。3)求解函數模型;
。4)簡(jiǎn)要回答實(shí)際問(wèn)題。
常見(jiàn)考法:
本節知識在段考和高考中考查的形式多樣,頻率較高,選擇題、填空題和解答題都有。多考查分段函數和較復雜的函數的最值等問(wèn)題,屬于拔高題,難度較大。
誤區提醒:
1、求解應用性問(wèn)題時(shí),不僅要考慮函數本身的定義域,還要結合實(shí)際問(wèn)題理解自變量的取值范圍。
2、求解應用性問(wèn)題時(shí),首先要弄清題意,分清條件和結論,抓住關(guān)鍵詞和量,理順數量關(guān)系,然后將文字語(yǔ)言轉化成數學(xué)語(yǔ)言,建立相應的數學(xué)模型。
【典型例題】
例1:
。1)某種儲蓄的月利率是0。36%,今存入本金100元,求本金與利息的和(即本息和)y(元)與所存月數x之間的函數關(guān)系式,并計算5個(gè)月后的本息和(不計復利)。
。2)按復利計算利息的一種儲蓄,本金為a元,每期利率為r,設本利和為y,存期為x,寫(xiě)出本利和y隨存期x變化的函數式。如果存入本金1000元,每期利率2。25%,試計算5期后的本利和是多少?解:(1)利息=本金×月利率×月數。y=100+100×0。36%·x=100+0。36x,當x=5時(shí),y=101。8,∴5個(gè)月后的本息和為101。8元。
例2:
某民營(yíng)企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據市場(chǎng)調查和預測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2(注:利潤與投資單位是萬(wàn)元)
。1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數,并寫(xiě)出它們的函數關(guān)系式。
。2)該企業(yè)已籌集到10萬(wàn)元資金,并全部投入A,B兩種產(chǎn)品的生產(chǎn),問(wèn):怎樣分配這10萬(wàn)元投資,才能是企業(yè)獲得利潤,其利潤約為多少萬(wàn)元。(精確到1萬(wàn)元)。
高一數學(xué)知識點(diǎn)總結10
直線(xiàn)和平面垂直
直線(xiàn)和平面垂直的定義:如果一條直線(xiàn)a和一個(gè)平面內的任意一條直線(xiàn)都垂直,我們就說(shuō)直線(xiàn)a和平面互相垂直.直線(xiàn)a叫做平面的垂線(xiàn),平面叫做直線(xiàn)a的垂面。
直線(xiàn)與平面垂直的判定定理:如果一條直線(xiàn)和一個(gè)平面內的兩條相交直線(xiàn)都垂直,那么這條直線(xiàn)垂直于這個(gè)平面。
直線(xiàn)與平面垂直的性質(zhì)定理:如果兩條直線(xiàn)同垂直于一個(gè)平面,那么這兩條直線(xiàn)平行。③直線(xiàn)和平面平行——沒(méi)有公共點(diǎn)
直線(xiàn)和平面平行的定義:如果一條直線(xiàn)和一個(gè)平面沒(méi)有公共點(diǎn),那么我們就說(shuō)這條直線(xiàn)和這個(gè)平面平行。
直線(xiàn)和平面平行的判定定理:如果平面外一條直線(xiàn)和這個(gè)平面內的一條直線(xiàn)平行,那么這條直線(xiàn)和這個(gè)平面平行。
直線(xiàn)和平面平行的性質(zhì)定理:如果一條直線(xiàn)和一個(gè)平面平行,經(jīng)過(guò)這條直線(xiàn)的平面和這個(gè)平面相交,那么這條直線(xiàn)和交線(xiàn)平行。
多面體
1、棱柱
棱柱的定義:有兩個(gè)面互相平行,其余各面都是四邊形,并且每?jì)蓚(gè)四邊形的公共邊都互相平行,這些面圍成的幾何體叫做棱柱。
棱柱的性質(zhì)
(1)側棱都相等,側面是平行四邊形
(2)兩個(gè)底面與平行于底面的截面是全等的多邊形
(3)過(guò)不相鄰的兩條側棱的截面(對角面)是平行四邊形
2、棱錐
棱錐的定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,這些面圍成的幾何體叫做棱錐
棱錐的性質(zhì):
(1)側棱交于一點(diǎn)。側面都是三角形
(2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠棱錐高的比的平方
3、正棱錐
正棱錐的定義:如果一個(gè)棱錐底面是正多邊形,并且頂點(diǎn)在底面內的射影是底面的中心,這樣的棱錐叫做正棱錐。
正棱錐的性質(zhì):
(1)各側棱交于一點(diǎn)且相等,各側面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。
(3)多個(gè)特殊的直角三角形
a、相鄰兩側棱互相垂直的正三棱錐,由三垂線(xiàn)定理可得頂點(diǎn)在底面的射影為底面三角形的垂心。
b、四面體中有三對異面直線(xiàn),若有兩對互相垂直,則可得第三對也互相垂直。且頂點(diǎn)在底面的射影為底面三角形的垂心。
高一數學(xué)知識點(diǎn)總結11
集合具有某種特定性質(zhì)的事物的總體。這里的事物可以是人,物品,也可以是數學(xué)元素。
例如:
1、分散的人或事物聚集到一起;使聚集:緊急~。
2、數學(xué)名詞。一組具有某種共同性質(zhì)的數學(xué)元素:有理數的~。
3、口號等等。集合在數學(xué)概念中有好多概念,如集合論:集合是現代數學(xué)的基本概念,專(zhuān)門(mén)研究集合的理論叫做集合論?低(Cantor,G.F.P.,1845年1918年,德國數學(xué)家先驅?zhuān)羌险摰,目前集合論的基本思想已?jīng)滲透到現代數學(xué)的所有領(lǐng)域。
集合,在數學(xué)上是一個(gè)基礎概念。什么叫基礎概念?基礎概念是不能用其他概念加以定義的概念。集合的概念,可通過(guò)直觀(guān)、公理的方法來(lái)下定義。
集合是把人們的直觀(guān)的或思維中的某些確定的能夠區分的對象匯合在一起,使之成為一個(gè)整體(或稱(chēng)為單體),這一整體就是集合。組成一集合的那些對象稱(chēng)為這一集合的元素(或簡(jiǎn)稱(chēng)為元)。
集合與集合之間的關(guān)系
某些指定的對象集在一起就成為一個(gè)集合集合符號,含有有限個(gè)元素叫有限集,含有無(wú)限個(gè)元素叫無(wú)限集,空集是不含任何元素的集,記做?占侨魏渭系淖蛹,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有傳遞性。
(說(shuō)明一下:如果集合A的所有元素同時(shí)都是集合B的元素,則A稱(chēng)作是B的子集,寫(xiě)作AB。若A是B的子集,且A不等于B,則A稱(chēng)作是B的真子集,一般寫(xiě)作AB。中學(xué)教材課本里將符號下加了一個(gè)符號,不要混淆,考試時(shí)還是要以課本為準。所有男人的集合是所有人的集合的真子集。)
高一數學(xué)知識點(diǎn)總結12
圓的方程定義:
圓的標準方程(x-a)2+(y-b)2=r2中,有三個(gè)參數a、b、r,即圓心坐標為(a,b),只要求出a、b、r,這時(shí)圓的方程就被確定,因此確定圓方程,須三個(gè)獨立條件,其中圓心坐標是圓的定位條件,半徑是圓的定形條件。
直線(xiàn)和圓的位置關(guān)系:
1.直線(xiàn)和圓位置關(guān)系的判定方法一是方程的觀(guān)點(diǎn),即把圓的方程和直線(xiàn)的方程聯(lián)立成方程組,利用判別式Δ來(lái)討論位置關(guān)系.
、佴>0,直線(xiàn)和圓相交.②Δ=0,直線(xiàn)和圓相切.③Δ<0,直線(xiàn)和圓相離.
方法二是幾何的觀(guān)點(diǎn),即把圓心到直線(xiàn)的距離d和半徑R的大小加以比較.
、賒R,直線(xiàn)和圓相離.
2.直線(xiàn)和圓相切,這類(lèi)問(wèn)題主要是求圓的切線(xiàn)方程.求圓的切線(xiàn)方程主要可分為已知斜率k或已知直線(xiàn)上一點(diǎn)兩種情況,而已知直線(xiàn)上一點(diǎn)又可分為已知圓上一點(diǎn)和圓外一點(diǎn)兩種情況.
3.直線(xiàn)和圓相交,這類(lèi)問(wèn)題主要是求弦長(cháng)以及弦的中點(diǎn)問(wèn)題.
切線(xiàn)的性質(zhì)
、艌A心到切線(xiàn)的距離等于圓的半徑;
、七^(guò)切點(diǎn)的半徑垂直于切線(xiàn);
、墙(jīng)過(guò)圓心,與切線(xiàn)垂直的直線(xiàn)必經(jīng)過(guò)切點(diǎn);
、冉(jīng)過(guò)切點(diǎn),與切線(xiàn)垂直的直線(xiàn)必經(jīng)過(guò)圓心;
當一條直線(xiàn)滿(mǎn)足
(1)過(guò)圓心;
(2)過(guò)切點(diǎn);
(3)垂直于切線(xiàn)三個(gè)性質(zhì)中的兩個(gè)時(shí),第三個(gè)性質(zhì)也滿(mǎn)足.
切線(xiàn)的判定定理
經(jīng)過(guò)半徑的外端點(diǎn)并且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn).
切線(xiàn)長(cháng)定理
從圓外一點(diǎn)作圓的兩條切線(xiàn),兩切線(xiàn)長(cháng)相等,圓心與這一點(diǎn)的連線(xiàn)平分兩條切線(xiàn)的夾角.
圓錐曲線(xiàn)性質(zhì):
一、圓錐曲線(xiàn)的定義
1.橢圓:到兩個(gè)定點(diǎn)的距離之和等于定長(cháng)(定長(cháng)大于兩個(gè)定點(diǎn)間的距離)的動(dòng)點(diǎn)的軌跡叫做橢圓.
2.雙曲線(xiàn):到兩個(gè)定點(diǎn)的距離的差的絕對值為定值(定值小于兩個(gè)定點(diǎn)的距離)的動(dòng)點(diǎn)軌跡叫做雙曲線(xiàn).即.
3.圓錐曲線(xiàn)的統一定義:到定點(diǎn)的距離與到定直線(xiàn)的距離的比e是常數的點(diǎn)的軌跡叫做圓錐曲線(xiàn).當01時(shí)為雙曲線(xiàn).
二、圓錐曲線(xiàn)的方程
1.橢圓:+=1(a>b>0)或+=1(a>b>0)(其中,a2=b2+c2)
2.雙曲線(xiàn):-=1(a>0,b>0)或-=1(a>0,b>0)(其中,c2=a2+b2)
3.拋物線(xiàn):y2=±2px(p>0),x2=±2py(p>0)
三、圓錐曲線(xiàn)的性質(zhì)
1.橢圓:+=1(a>b>0)
(1)范圍:|x|≤a,|y|≤b(2)頂點(diǎn):(±a,0),(0,±b)(3)焦點(diǎn):(±c,0)(4)離心率:e=∈(0,1)(5)準線(xiàn):x=±
2.雙曲線(xiàn):-=1(a>0,b>0)(1)范圍:|x|≥a,y∈R(2)頂點(diǎn):(±a,0)(3)焦點(diǎn):(±c,0)(4)離心率:e=∈(1,+∞)(5)準線(xiàn):x=±(6)漸近線(xiàn):y=±x
3.拋物線(xiàn):y2=2px(p>0)(1)范圍:x≥0,y∈R(2)頂點(diǎn):(0,0)(3)焦點(diǎn):(,0)(4)離心率:e=1(5)準線(xiàn):x=-
高一數學(xué)知識點(diǎn)總結13
立體幾何初步
柱、錐、臺、球的結構特征
棱柱
定義:有兩個(gè)面互相平行,其余各面都是四邊形,且每相鄰兩個(gè)四邊形的公共邊都互相平行,由這些面所圍成的幾何體。
分類(lèi):以底面多邊形的邊數作為分類(lèi)的標準分為三棱柱、四棱柱、五棱柱等。
表示:用各頂點(diǎn)字母,如五棱柱或用對角線(xiàn)的端點(diǎn)字母,如五棱柱。
幾何特征:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行于底面的截面是與底面全等的多邊形。
棱錐
定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,由這些面所圍成的幾何體。
分類(lèi):以底面多邊形的邊數作為分類(lèi)的標準分為三棱錐、四棱錐、五棱錐等
表示:用各頂點(diǎn)字母,如五棱錐
幾何特征:側面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方。
棱臺
定義:用一個(gè)平行于棱錐底面的平面去截棱錐,截面和底面之間的部分。
分類(lèi):以底面多邊形的邊數作為分類(lèi)的標準分為三棱態(tài)、四棱臺、五棱臺等
表示:用各頂點(diǎn)字母,如五棱臺
幾何特征:①上下底面是相似的平行多邊形②側面是梯形③側棱交于原棱錐的頂點(diǎn)
圓柱
定義:以矩形的一邊所在的直線(xiàn)為軸旋轉,其余三邊旋轉所成的曲面所圍成的幾何體。
幾何特征:①底面是全等的圓;②母線(xiàn)與軸平行;③軸與底面圓的半徑垂直;④側面展開(kāi)圖是一個(gè)矩形。
圓錐
定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成的曲面所圍成的幾何體。
幾何特征:①底面是一個(gè)圓;②母線(xiàn)交于圓錐的頂點(diǎn);③側面展開(kāi)圖是一個(gè)扇形。
圓臺
定義:用一個(gè)平行于圓錐底面的平面去截圓錐,截面和底面之間的部分
幾何特征:①上下底面是兩個(gè)圓;②側面母線(xiàn)交于原圓錐的頂點(diǎn);③側面展開(kāi)圖是一個(gè)弓形。
球體
定義:以半圓的直徑所在直線(xiàn)為旋轉軸,半圓面旋轉一周形成的幾何體
幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑。
NO.2空間幾何體的三視圖
定義三視圖
定義三視圖:正視圖(光線(xiàn)從幾何體的前面向后面正投影);側視圖(從左向右)、俯視圖(從上向下)
注:正視圖反映了物體上下、左右的位置關(guān)系,即反映了物體的高度和長(cháng)度;
俯視圖反映了物體左右、前后的位置關(guān)系,即反映了物體的長(cháng)度和寬度;
側視圖反映了物體上下、前后的位置關(guān)系,即反映了物體的高度和寬度。
NO.3空間幾何體的直觀(guān)圖——斜二測畫(huà)法
斜二測畫(huà)法
斜二測畫(huà)法特點(diǎn)
、僭瓉(lái)與x軸平行的線(xiàn)段仍然與x平行且長(cháng)度不變;
、谠瓉(lái)與y軸平行的線(xiàn)段仍然與y平行,長(cháng)度為原來(lái)的一半。
直線(xiàn)與方程
直線(xiàn)的傾斜角
定義:x軸正向與直線(xiàn)向上方向之間所成的角叫直線(xiàn)的傾斜角。特別地,當直線(xiàn)與x軸平行或重合時(shí),我們規定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°
直線(xiàn)的斜率
定義:傾斜角不是90°的直線(xiàn),它的傾斜角的正切叫做這條直線(xiàn)的斜率。直線(xiàn)的斜率常用k表示。即。斜率反映直線(xiàn)與軸的傾斜程度。
過(guò)兩點(diǎn)的直線(xiàn)的斜率公式:
(注意下面四點(diǎn))
(1)當時(shí),公式右邊無(wú)意義,直線(xiàn)的斜率不存在,傾斜角為90°;
(2)k與P1、P2的順序無(wú)關(guān);
(3)以后求斜率可不通過(guò)傾斜角而由直線(xiàn)上兩點(diǎn)的坐標直接求得;
(4)求直線(xiàn)的傾斜角可由直線(xiàn)上兩點(diǎn)的坐標先求斜率得到。
冪函數
定義
形如y=x^a(a為常數)的函數,即以底數為自變量?jì)鐬橐蜃兞,指數為常量的函數稱(chēng)為冪函數。
定義域和值域
當a為不同的數值時(shí),冪函數的定義域的不同情況如下:如果a為任意實(shí)數,則函數的定義域為大于0的所有實(shí)數;如果a為負數,則x肯定不能為0,不過(guò)這時(shí)函數的定義域還必須根[據q的奇偶性來(lái)確定,即如果同時(shí)q為偶數,則x不能小于0,這時(shí)函數的定義域為大于0的所有實(shí)數;如果同時(shí)q為奇數,則函數的定義域為不等于0的所有實(shí)數。當x為不同的數值時(shí),冪函數的值域的不同情況如下:在x大于0時(shí),函數的值域總是大于0的實(shí)數。在x小于0時(shí),則只有同時(shí)q為奇數,函數的值域為非零的實(shí)數。而只有a為正數,0才進(jìn)入函數的值域
性質(zhì)
對于a的取值為非零有理數,有必要分成幾種情況來(lái)討論各自的特性:
首先我們知道如果a=p/q,q和p都是整數,則x^(p/q)=q次根號(x的p次方),如果q是奇數,函數的定義域是R,如果q是偶數,函數的定義域是[0,+∞)。當指數n是負整數時(shí),設a=-k,則x=1/(x^k),顯然x≠0,函數的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來(lái)源于兩點(diǎn),一是有可能作為分母而不能是0,一是有可能在偶數次的根號下而不能為負數,那么我們就可以知道:
排除了為0與負數兩種可能,即對于x>0,則a可以是任意實(shí)數;
排除了為0這種可能,即對于x<0和x>0的所有實(shí)數,q不能是偶數;
排除了為負數這種可能,即對于x為大于且等于0的所有實(shí)數,a就不能是負數。
高一數學(xué)知識點(diǎn)總結14
(1)指數函數的定義域為所有實(shí)數的集合,這里的前提是a大于0,對于a不大于0的情況,則必然使得函數的定義域不存在連續的區間,因此我們不予考慮。
(2)指數函數的值域為大于0的實(shí)數集合。
(3)函數圖形都是下凹的。
(4)a大于1,則指數函數單調遞增;a小于1大于0,則為單調遞減的。
(5)可以看到一個(gè)顯然的規律,就是當a從0趨向于無(wú)窮大的過(guò)程中(當然不能等于0),函數的曲線(xiàn)從分別接近于Y軸與X軸的正半軸的單調遞減函數的位置,趨向分別接近于Y軸的正半軸與X軸的負半軸的單調遞增函數的位置。其中水平直線(xiàn)y=1是從遞減到遞增的一個(gè)過(guò)渡位置。
(6)函數總是在某一個(gè)方向上無(wú)限趨向于X軸,永不相交。
(7)函數總是通過(guò)(0,1)這點(diǎn)。
(8)顯然指數函數無(wú)界。
奇偶性
定義
一般地,對于函數f(x)
(1)如果對于函數定義域內的任意一個(gè)x,都有f(-x)=-f(x),那么函數f(x)就叫做奇函數。
(2)如果對于函數定義域內的任意一個(gè)x,都有f(-x)=f(x),那么函數f(x)就叫做偶函數。
(3)如果對于函數定義域內的任意一個(gè)x,f(-x)=-f(x)與f(-x)=f(x)同時(shí)成立,那么函數f(x)既是奇函數又是偶函數,稱(chēng)為既奇又偶函數。
(4)如果對于函數定義域內的任意一個(gè)x,f(-x)=-f(x)與f(-x)=f(x)都不能成立,那么函數f(x)既不是奇函數又不是偶函數,稱(chēng)為非奇非偶函數。
對于a的取值為非零有理數,有必要分成幾種情況來(lái)討論各自的特性:
首先我們知道如果a=p/q,q和p都是整數,則x^(p/q)=q次根號(x的p次方),如果q是奇數,函數的定義域是R,如果q是偶數,函數的定義域是[0,+∞)。當指數n是負整數時(shí),設a=-k,則x=1/(x^k),顯然x≠0,函數的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來(lái)源于兩點(diǎn),一是有可能作為分母而不能是0,一是有可能在偶數次的根號下而不能為負數,那么我們就可以知道:
排除了為0與負數兩種可能,即對于x>0,則a可以是任意實(shí)數;
排除了為0這種可能,即對于x<0和x>0的所有實(shí)數,q不能是偶數;
排除了為負數這種可能,即對于x為大于且等于0的所有實(shí)數,a就不能是負數。
總結起來(lái),就可以得到當a為不同的數值時(shí),冪函數的定義域的不同情況如下:如果a為任意實(shí)數,則函數的定義域為大于0的所有實(shí)數;
如果a為負數,則x肯定不能為0,不過(guò)這時(shí)函數的定義域還必須根據q的奇偶性來(lái)確定,即如果同時(shí)q為偶數,則x不能小于0,這時(shí)函數的定義域為大于0的所有實(shí)數;如果同時(shí)q為奇數,則函數的定義域為不等于0的所有實(shí)數。
在x大于0時(shí),函數的值域總是大于0的實(shí)數。
在x小于0時(shí),則只有同時(shí)q為奇數,函數的值域為非零的實(shí)數。
而只有a為正數,0才進(jìn)入函數的值域。
由于x大于0是對a的任意取值都有意義的,因此下面給出冪函數在第一象限的各自情況.
可以看到:
(1)所有的圖形都通過(guò)(1,1)這點(diǎn)。
(2)當a大于0時(shí),冪函數為單調遞增的,而a小于0時(shí),冪函數為單調遞減函數。
(3)當a大于1時(shí),冪函數圖形下凹;當a小于1大于0時(shí),冪函數圖形上凸。
(4)當a小于0時(shí),a越小,圖形傾斜程度越大。
(5)a大于0,函數過(guò)(0,0);a小于0,函數不過(guò)(0,0)點(diǎn)。
(6)顯然冪函數無(wú)界。
定義:
x軸正向與直線(xiàn)向上方向之間所成的角叫直線(xiàn)的傾斜角。特別地,當直線(xiàn)與x軸平行或重合時(shí),我們規定它的傾斜角為0度。
范圍:
傾斜角的取值范圍是0°≤α<180°。
理解:
(1)注意“兩個(gè)方向”:直線(xiàn)向上的方向、x軸的正方向;
(2)規定當直線(xiàn)和x軸平行或重合時(shí),它的傾斜角為0度。
意義:
、僦本(xiàn)的傾斜角,體現了直線(xiàn)對x軸正向的傾斜程度;
、谠谄矫嬷苯亲鴺讼抵,每一條直線(xiàn)都有一個(gè)確定的傾斜角;
、蹆A斜角相同,未必表示同一條直線(xiàn)。
公式:
k=tanα
k>0時(shí)α∈(0°,90°)
k<0時(shí)α∈(90°,180°)
k=0時(shí)α=0°
當α=90°時(shí)k不存在
ax+by+c=0(a≠0)傾斜角為A,
則tanA=-a/b,
A=arctan(-a/b)
當a≠0時(shí),
傾斜角為90度,即與X軸垂直
高一數學(xué)知識點(diǎn)總結15
高一數學(xué)集合有關(guān)概念
集合的含義
集合的中元素的三個(gè)特性:
元素的確定性如:世界上的山
元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}
元素的無(wú)序性:如:{a,b,c}和{a,c,b}是表示同一個(gè)集合
3。集合的表示:{…}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}
用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
集合的表示方法:列舉法與描述法。
注意:常用數集及其記法:
非負整數集(即自然數集)記作:N
正整數集N_N+整數集Z有理數集Q實(shí)數集R
列舉法:{a,b,c……}
描述法:將集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號內表示集合的方法。{x(R|x—3>2},{x|x—3>2}
語(yǔ)言描述法:例:{不是直角三角形的三角形}
Venn圖:
4、集合的分類(lèi):
有限集含有有限個(gè)元素的集合
無(wú)限集含有無(wú)限個(gè)元素的集合
空集不含任何元素的集合例:{x|x2=—5}
【高一數學(xué)知識點(diǎn)總結(匯編15篇)】相關(guān)文章: