高二數學(xué)必修五知識點(diǎn)總結
總結是事后對某一階段的學(xué)習、工作或其完成情況加以回顧和分析的一種書(shū)面材料,它能使我們及時(shí)找出錯誤并改正,我想我們需要寫(xiě)一份總結了吧?偨Y怎么寫(xiě)才能發(fā)揮它的作用呢?下面是小編為大家收集的高二數學(xué)必修五知識點(diǎn)總結,歡迎閱讀與收藏。
高二數學(xué)必修五知識點(diǎn)總結 篇1
(一)解三角形:
1、正弦定理:在中,、、分別為角、、的對邊,,則有
(為的外接圓的半徑)
2、正弦定理的變形公式:①,,;
、,,;③;
3、三角形面積公式:.
4、余弦定理:在中,有,推論:
(二)數列:
1.數列的有關(guān)概念:
(1)數列:按照一定次序排列的一列數。數列是有序的。數列是定義在自然數N_它的有限子集{1,2,3,…,n}上的函數。
(2)通項公式:數列的第n項an與n之間的函數關(guān)系用一個(gè)公式來(lái)表示,這個(gè)公式即是該數列的通項公式。如:。
(3)遞推公式:已知數列{an}的第1項(或前幾項),且任一項an與他的前一項an-1(或前幾項)可以用一個(gè)公式來(lái)表示,這個(gè)公式即是該數列的遞推公式。
如:。
2.數列的表示方法:
(1)列舉法:如1,3,5,7,9,…(2)圖象法:用(n,an)孤立點(diǎn)表示。
(3)解析法:用通項公式表示。(4)遞推法:用遞推公式表示。
3.數列的分類(lèi):
4.數列{an}及前n項和之間的關(guān)系:
高二數學(xué)必修五知識點(diǎn)總結 篇2
不等關(guān)系及不等式知識點(diǎn)
1.不等式的定義
在客觀(guān)世界中,量與量之間的不等關(guān)系是普遍存在的,我們用數學(xué)符號、、連接兩個(gè)數或代數式以表示它們之間的不等關(guān)系,含有這些不等號的式子,叫做不等式.
2.比較兩個(gè)實(shí)數的大小
兩個(gè)實(shí)數的大小是用實(shí)數的運算性質(zhì)來(lái)定義的,有a-baa-b=0a-ba0,則有a/baa/b=1a/ba
3.不等式的性質(zhì)
(1)對稱(chēng)性:ab
(2)傳遞性:ab,ba
(3)可加性:aa+cb+c,ab,ca+c
(4)可乘性:ab,cacb0,c0bd;
(5)可乘方:a0bn(nN,n
(6)可開(kāi)方:a0
(nN,n2).
注意:
一個(gè)技巧
作差法變形的技巧:作差法中變形是關(guān)鍵,常進(jìn)行因式分解或配方.
一種方法
待定系數法:求代數式的范圍時(shí),先用已知的代數式表示目標式,再利用多項式相等的法則求出參數,最后利用不等式的性質(zhì)求出目標式的范圍.
高二數學(xué)必修五知識點(diǎn)總結 篇3
排列組合
排列P------和順序有關(guān)
組合C-------不牽涉到順序的問(wèn)題
排列分順序,組合不分
例如把5本不同的書(shū)分給3個(gè)人,有幾種分法."排列"
把5本書(shū)分給3個(gè)人,有幾種分法"組合"
1.排列及計算公式
從n個(gè)不同元素中,任取m(m≤n)個(gè)元素按照一定的順序排成一列,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)排列;從n個(gè)不同元素中取出m(m≤n)個(gè)元素的所有排列的個(gè)數,叫做從n個(gè)不同元素中取出m個(gè)元素的排列數,用符號p(n,m)表示.
p(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!(規定0!=1).
2.組合及計算公式
從n個(gè)不同元素中,任取m(m≤n)個(gè)元素并成一組,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)組合;從n個(gè)不同元素中取出m(m≤n)個(gè)元素的所有組合的個(gè)數,叫做從n個(gè)不同元素中取出m個(gè)元素的組合數.用符號
c(n,m)表示.
c(n,m)=p(n,m)/m!=n!/((n-m)!_!);c(n,m)=c(n,n-m);
3.其他排列與組合公式
從n個(gè)元素中取出r個(gè)元素的循環(huán)排列數=p(n,r)/r=n!/r(n-r)!.
n個(gè)元素被分成k類(lèi),每類(lèi)的個(gè)數分別是n1,n2,...nk這n個(gè)元素的全排列數為
n!/(n1!_2!_.._k!).
k類(lèi)元素,每類(lèi)的個(gè)數無(wú)限,從中取出m個(gè)元素的組合數為c(m+k-1,m).
排列(Pnm(n為下標,m為上標))
Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是階乘符號);Pnn(兩個(gè)n分別為上標和下標)=n!;0!=1;Pn1(n為下標1為上標)=n
組合(Cnm(n為下標,m為上標))
Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(兩個(gè)n分別為上標和下標)=1;Cn1(n為下標1為上標)=n;Cnm=Cnn-m
20xx-07-0813:30
公式P是指排列,從N個(gè)元素取R個(gè)進(jìn)行排列。公式C是指組合,從N個(gè)元素取R個(gè),不進(jìn)行排列。N-元素的總個(gè)數R參與選擇的元素個(gè)數!-階乘,如9!=9________
從N倒數r個(gè),表達式應該為n_n-1)_n-2)..(n-r+1);
因為從n到(n-r+1)個(gè)數為n-(n-r+1)=r
高二數學(xué)必修五知識點(diǎn)總結 篇4
1.等差數列通項公式
an=a1+(n-1)d
n=1時(shí)a1=S1
n≥2時(shí)an=Sn-Sn-1
an=kn+b(k,b為常數)推導過(guò)程:an=dn+a1-d令d=k,a1-d=b則得到an=kn+b
2.等差中項
由三個(gè)數a,A,b組成的等差數列可以堪稱(chēng)最簡(jiǎn)單的等差數列。這時(shí),A叫做a與b的等差中項(arithmeticmean)。
有關(guān)系:A=(a+b)÷2
3.前n項和
倒序相加法推導前n項和公式:
Sn=a1+a2+a3+·····+an
=a1+(a1+d)+(a1+2d)+······+[a1+(n-1)d]①
Sn=an+an-1+an-2+······+a1
=an+(an-d)+(an-2d)+······+[an-(n-1)d]②
由①+②得2Sn=(a1+an)+(a1+an)+······+(a1+an)(n個(gè))=n(a1+an)
∴Sn=n(a1+an)÷2
等差數列的前n項和等于首末兩項的和與項數乘積的一半:
Sn=n(a1+an)÷2=na1+n(n-1)d÷2
Sn=dn2÷2+n(a1-d÷2)
亦可得
a1=2sn÷n-an=[sn-n(n-1)d÷2]÷n
an=2sn÷n-a1
有趣的是S2n-1=(2n-1)an,S2n+1=(2n+1)an+1
4.等差數列性質(zhì)
一、任意兩項am,an的`關(guān)系為:
an=am+(n-m)d
它可以看作等差數列廣義的通項公式。
二、從等差數列的定義、通項公式,前n項和公式還可推出:
a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈N
三、若m,n,p,q∈N_且m+n=p+q,則有am+an=ap+aq
四、對任意的k∈N_有
Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…成等差數列。
高二數學(xué)必修五知識點(diǎn)總結 篇5
1.數列的函數理解:
、贁盗惺且环N特殊的函數。其特殊性主要表現在其定義域和值域上。數列可以看作一個(gè)定義域為正整數集N_其有限子集{1,2,3,…,n}的函數,其中的{1,2,3,…,n}不能省略。②用函數的觀(guān)點(diǎn)認識數列是重要的思想方法,一般情況下函數有三種表示方法,數列也不例外,通常也有三種表示方法:a.列表法;b。圖像法;c.解析法。其中解析法包括以通項公式給出數列和以遞推公式給出數列。③函數不一定有解析式,同樣數列也并非都有通項公式。
2.通項公式:數列的第N項an與項的序數n之間的關(guān)系可以用一個(gè)公式an=f(n)來(lái)表示,這個(gè)公式就叫做這個(gè)數列的通項公式(注:通項公式不)。
數列通項公式的特點(diǎn):
(1)有些數列的通項公式可以有不同形式,即不。
(2)有些數列沒(méi)有通項公式(如:素數由小到大排成一列2,3,5,7,11,...)。
3.遞推公式:如果數列{an}的第n項與它前一項或幾項的關(guān)系可以用一個(gè)式子來(lái)表示,那么這個(gè)公式叫做這個(gè)數列的遞推公式。
數列遞推公式特點(diǎn):
(1)有些數列的遞推公式可以有不同形式,即不。
(2)有些數列沒(méi)有遞推公式。
有遞推公式不一定有通項公式。
高二數學(xué)必修五知識點(diǎn)總結 篇6
數列
1、數列的定義及數列的通項公式:
、 an?f(n),數列是定義域為N
的函數f(n),當n依次取1,2,???時(shí)的一列函數值② i。歸納法
若S0?0,則an不分段;若S0?0,則an分段iii。若an?1?pan?q,則可設an?1?m?p(an?m)解得m,得等比數列?an?m?
?Sn?f(an)
iv。若Sn?f(an),先求a
1?得到關(guān)于an?1和an的遞推關(guān)系式
S?f(a)n?1?n?1?Sn?2an?1
例如:Sn?2an?1先求a1,再構造方程組:??(下減上)an?1?2an?1?2an
?Sn?1?2an?1?1
2、等差數列:
、俣x:a
n?1?an=d(常數),證明數列是等差數列的重要工具。 ②通項d?0時(shí),an為關(guān)于n的一次函數;
d>0時(shí),an為單調遞增數列;d<0時(shí),a
n為單調遞減數列。
n(n?1)2
、矍皀?na1?
d,
d?0時(shí),Sn是關(guān)于n的不含常數項的一元二次函數,反之也成立。
、苄再|(zhì):ii。若?an?為等差數列,則am,am?k,am?2k,…仍為等差數列。 iii。若?an?為等差數列,則Sn,S2n?Sn,S3n?S2n,…仍為等差數列。 iv若A為a,b的等差中項,則有A?3。等比數列:
、俣x:
an?1an
?q(常數),是證明數列是等比數列的重要工具。
a?b2
、谕棔r(shí)為常數列)。
、。前n項和
需特別注意,公比為字母時(shí)要討論。
高二數學(xué)必修五知識點(diǎn)總結 篇7
●不等式
1、不等式你會(huì )解么?你會(huì )解么?如果是寫(xiě)解集不要忘記寫(xiě)成集合形式!
2、的解集是(1,3),那么的解集是什么?
3、兩類(lèi)恒成立問(wèn)題圖象法——恒成立,則=?
★★★★分離變量法——在[1,3]恒成立,則=?(必考題)
4、線(xiàn)性規劃問(wèn)題
。1)可行域怎么作(一定要用直尺和鉛筆)定界——定域——邊界
。2)目標函數改寫(xiě):(注意分析截距與z的關(guān)系)
。3)平行直線(xiàn)系去畫(huà)
5、基本不等式的形式和變形形式
如a,b為正數,a,b滿(mǎn)足,則ab的范圍是
6、運用基本不等式求最值要注意:一正二定三相等!
如的最小值是的最小值(不要忘記交代是什么時(shí)候取到=。。
一個(gè)非常重要的函數——對勾函數的圖象是什么?
運用對勾函數來(lái)處理下面問(wèn)題的最小值是
7、★★兩種題型:
和——倒數和(1的代換),如x,y為正數,且,求的最小值?
和——積(直接用基本不等式),如x,y為正數,,則的范圍是?
不要忘記x,xy,x2+y2這三者的關(guān)系!如x,y為正數,,則的范圍是?
【高二數學(xué)必修五知識點(diǎn)總結】相關(guān)文章:
高二外研社必修五作文11-04
高二語(yǔ)文必修五作文07-16
數學(xué)必修五教學(xué)設計、12-29
高二必修五語(yǔ)文材料作文07-28
高二語(yǔ)文必修3《蜀道難》知識點(diǎn)12-27
高二語(yǔ)文必修五作文3篇08-24