成人免费看黄网站无遮挡,caowo999,se94se欧美综合色,a级精品九九九大片免费看,欧美首页,波多野结衣一二三级,日韩亚洲欧美综合

高二數學(xué)知識點(diǎn)考點(diǎn)歸納

時(shí)間:2022-04-23 18:34:30 總結 我要投稿
  • 相關(guān)推薦

高二數學(xué)知識點(diǎn)考點(diǎn)歸納5篇

高二數學(xué)知識點(diǎn)考點(diǎn)歸納5篇1

  第一章:集合和函數的基本概念,錯誤基本都集中在空集這一概念上,而每次考試基本都會(huì )在選填題上涉及這一概念,一個(gè)不小心就是五分沒(méi)了。次一級的知識點(diǎn)就是集合的韋恩圖,會(huì )畫(huà)圖,集合的“并、補、交、非”也就解決了,還有函數的定義域和函數的單調性、增減性的概念,這些都是函數的基礎而且不難理解。在第一輪復習中一定要反復去記這些概念,的方法是寫(xiě)在筆記本上,每天至少看上一遍。

高二數學(xué)知識點(diǎn)考點(diǎn)歸納5篇

  第二章:基本初等函數:指數、對數、冪函數三大函數的.運算性質(zhì)及圖像。函數的幾大要素和相關(guān)考點(diǎn)基本都在函數圖像上有所體現,單調性、增減性、極值、零點(diǎn)等等。關(guān)于這三大函數的運算公式,多記多用,多做一點(diǎn)練習基本就沒(méi)多大問(wèn)題。函數圖像是這一章的重難點(diǎn),而且圖像問(wèn)題是不能靠記憶的,必須要理解,要會(huì )熟練的畫(huà)出函數圖像,定義域、值域、零點(diǎn)等等。對于冪函數還要搞清楚當指數冪大于一和小于一時(shí)圖像的不同及函數值的大小關(guān)系,這也是?汲ee點(diǎn)。另外指數函數和對數函數的對立關(guān)系及其相互之間要怎樣轉化問(wèn)題也要了解清楚。

  第三章:函數的應用。主要就是函數與方程的結合。其實(shí)就是的實(shí)根,即函數的零點(diǎn),也就是函數圖像與X軸的交點(diǎn)。這三者之間的轉化關(guān)系是這一章的重點(diǎn),要學(xué)會(huì )在這三者之間的靈活轉化,以求能最簡(jiǎn)單的解決問(wèn)題。關(guān)于證明零點(diǎn)的方法,直接計算加得必有零點(diǎn),連續函數在x軸上方下方有定義則有零點(diǎn)等等,這是這一章的難點(diǎn),這幾種證明方法都要記得,多練習強化。這二次函數的零點(diǎn)的Δ判別法,這個(gè)倒不算難。

高二數學(xué)知識點(diǎn)考點(diǎn)歸納5篇2

  空間中的平行問(wèn)題

  (1)直線(xiàn)與平面平行的判定及其性質(zhì)

  線(xiàn)面平行的判定定理:平面外一條直線(xiàn)與此平面內一條直線(xiàn)平行,則該直線(xiàn)與此平面平行.

  線(xiàn)線(xiàn)平行線(xiàn)面平行

  線(xiàn)面平行的`性質(zhì)定理:如果一條直線(xiàn)和一個(gè)平面平行,經(jīng)過(guò)這條直線(xiàn)的平面和這個(gè)平面相交,

  那么這條直線(xiàn)和交線(xiàn)平行.線(xiàn)面平行線(xiàn)線(xiàn)平行

  (2)平面與平面平行的判定及其性質(zhì)

  兩個(gè)平面平行的判定定理

  (1)如果一個(gè)平面內的兩條相交直線(xiàn)都平行于另一個(gè)平面,那么這兩個(gè)平面平行

  (線(xiàn)面平行→面面平行),

  (2)如果在兩個(gè)平面內,各有兩組相交直線(xiàn)對應平行,那么這兩個(gè)平面平行.

  (線(xiàn)線(xiàn)平行→面面平行),

  (3)垂直于同一條直線(xiàn)的兩個(gè)平面平行,

  兩個(gè)平面平行的性質(zhì)定理

  (1)如果兩個(gè)平面平行,那么某一個(gè)平面內的直線(xiàn)與另一個(gè)平面平行.(面面平行→線(xiàn)面平行)

  (2)如果兩個(gè)平行平面都和第三個(gè)平面相交,那么它們的交線(xiàn)平行.(面面平行→線(xiàn)線(xiàn)平行)

高二數學(xué)知識點(diǎn)考點(diǎn)歸納5篇3

  導數是微積分中的重要基礎概念。當函數y=f(x)的自變量x在一點(diǎn)x0上產(chǎn)生一個(gè)增量Δx時(shí),函數輸出值的增量Δy與自變量增量Δx的比值在Δx趨于0時(shí)的極限a如果存在,a即為在x0處的導數,記作f'(x0)或df(x0)/dx。

  導數是函數的局部性質(zhì)。一個(gè)函數在某一點(diǎn)的導數描述了這個(gè)函數在這一點(diǎn)附近的變化率。如果函數的自變量和取值都是實(shí)數的話(huà),函數在某一點(diǎn)的導數就是該函數所代表的曲線(xiàn)在這一點(diǎn)上的切線(xiàn)斜率。導數的本質(zhì)是通過(guò)極限的概念對函數進(jìn)行局部的線(xiàn)性逼近。例如在運動(dòng)學(xué)中,物體的位移對于時(shí)間的導數就是物體的瞬時(shí)速度。

  不是所有的函數都有導數,一個(gè)函數也不一定在所有的點(diǎn)上都有導數。若某函數在某一點(diǎn)導數存在,則稱(chēng)其在這一點(diǎn)可導,否則稱(chēng)為不可導。然而,可導的函數一定連續;不連續的函數一定不可導。

  對于可導的函數f(x),x?f'(x)也是一個(gè)函數,稱(chēng)作f(x)的導函數。尋找已知的函數在某點(diǎn)的導數或其導函數的'過(guò)程稱(chēng)為求導。實(shí)質(zhì)上,求導就是一個(gè)求極限的過(guò)程,導數的四則運算法則也來(lái)源于極限的四則運算法則。反之,已知導函數也可以倒過(guò)來(lái)求原來(lái)的函數,即不定積分。微積分基本定理說(shuō)明了求原函數與積分是等價(jià)的。求導和積分是一對互逆的操作,它們都是微積分學(xué)中最為基礎的概念。

高二數學(xué)知識點(diǎn)考點(diǎn)歸納5篇4

  導數:導數的意義-導數公式-導數應用(極值最值問(wèn)題、曲線(xiàn)切線(xiàn)問(wèn)題)

  1、導數的定義:在點(diǎn)處的導數記作.

  2.導數的幾何物理意義:曲線(xiàn)在點(diǎn)處切線(xiàn)的斜率

 、賙=f/(x0)表示過(guò)曲線(xiàn)y=f(x)上P(x0,f(x0))切線(xiàn)斜率。V=s/(t)表示即時(shí)速度。a=v/(t)表示加速度。

  3.常見(jiàn)函數的導數公式:①;②;③;

 、;⑥;⑦;⑧。

  4.導數的四則運算法則:

  5.導數的應用:

  (1)利用導數判斷函數的'單調性:設函數在某個(gè)區間內可導,如果,那么為增函數;如果,那么為減函數;

  注意:如果已知為減函數求字母取值范圍,那么不等式恒成立。

  (2)求極值的步驟:

 、偾髮;

 、谇蠓匠痰母;

 、哿斜:檢驗在方程根的左右的符號,如果左正右負,那么函數在這個(gè)根處取得極大值;如果左負右正,那么函數在這個(gè)根處取得極小值;

  (3)求可導函數值與最小值的步驟:

 、∏蟮母;ⅱ把根與區間端點(diǎn)函數值比較,的為值,最小的是最小值。

高二數學(xué)知識點(diǎn)考點(diǎn)歸納5篇5

  反正弦函數的導數:正弦函數y=sinx在[-π/2,π/2]上的反函數,叫做反正弦函數。記作arcsinx,表示一個(gè)正弦值為x的角,該角的'范圍在[-π/2,π/2]區間內。定義域[-1,1],值域[-π/2,π/2]。

  反函數求導方法

  若F(X),G(X)互為反函數,

  則:F'(X)_'(X)=1

  E.G.:y=arcsinx=siny

  y'_'=1(arcsinx)'_siny)'=1

  y'=1/(siny)'=1/(cosy)=1/根號(1-sin^2y)=1/根號(1-x^2)

  其余依此類(lèi)推