成人免费看黄网站无遮挡,caowo999,se94se欧美综合色,a级精品九九九大片免费看,欧美首页,波多野结衣一二三级,日韩亚洲欧美综合

高一數學(xué)知識點(diǎn)歸納總結

時(shí)間:2023-06-12 16:41:12 賽賽 知識點(diǎn)總結 我要投稿

高一數學(xué)知識點(diǎn)歸納總結

  總結是事后對某一時(shí)期、某一項目或某些工作進(jìn)行回顧和分析,從而做出帶有規律性的結論,它能夠使頭腦更加清醒,目標更加明確,因此,讓我們寫(xiě)一份總結吧?偨Y怎么寫(xiě)才不會(huì )千篇一律呢?下面是小編收集整理的高一數學(xué)知識點(diǎn)歸納總結,歡迎閱讀,希望大家能夠喜歡。

高一數學(xué)知識點(diǎn)歸納總結

  高一數學(xué)知識點(diǎn)歸納總結1

  一:函數及其表示

  知識點(diǎn)詳解文檔包含函數的概念、映射、函數關(guān)系的判斷原則、函數區間、函數的三要素、函數的定義域、求具體或抽象數值的函數值、求函數值域、函數的表示方法等

  1.函數與映射的區別:

  2.求函數定義域

  常見(jiàn)的用解析式表示的函數f(x)的定義域可以歸納如下:

 、佼攆(x)為整式時(shí),函數的定義域為R.

 、诋攆(x)為分式時(shí),函數的定義域為使分式分母不為零的實(shí)數集合。

 、郛攆(x)為偶次根式時(shí),函數的定義域是使被開(kāi)方數不小于0的實(shí)數集合。

 、墚攆(x)為對數式時(shí),函數的定義域是使真數為正、底數為正且不為1的實(shí)數集合。

 、萑绻鹒(x)是由幾個(gè)部分的數學(xué)式子構成的,那么函數定義域是使各部分式子都有意義的實(shí)數集合,即求各部分有意義的實(shí)數集合的交集。

 、迯秃虾瘮档亩x域是復合的各基本的函數定義域的交集。

 、邔τ谟蓪(shí)際問(wèn)題的背景確定的函數,其定義域除上述外,還要受實(shí)際問(wèn)題的制約。

  3.求函數值域

  (1)、觀(guān)察法:通過(guò)對函數定義域、性質(zhì)的觀(guān)察,結合函數的解析式,求得函數的值域;

  (2)、配方法;如果一個(gè)函數是二次函數或者經(jīng)過(guò)換元可以寫(xiě)成二次函數的形式,那么將這個(gè)函數的右邊配方,通過(guò)自變量的范圍可以求出該函數的值域;

  (3)、判別式法:

  (4)、數形結合法;通過(guò)觀(guān)察函數的圖象,運用數形結合的方法得到函數的值域;

  (5)、換元法;以新變量代替函數式中的某些量,使函數轉化為以新變量為自變量的函數形式,進(jìn)而求出值域;

  (6)、利用函數的單調性;如果函數在給出的定義域區間上是嚴格單調的,那么就可以利用端點(diǎn)的函數值來(lái)求出值域;

  (7)、利用基本不等式:對于一些特殊的分式函數、高于二次的函數可以利用重要不等式求出函數的值域;

  (8)、最值法:對于閉區間[a,b]上的連續函數y=f(x),可求出y=f(x)在區間[a,b]內的極值,并與邊界值f(a).f(b)作比較,求出函數的最值,可得到函數y的值域;

  (9)、反函數法:如果函數在其定義域內存在反函數,那么求函數的值域可以轉化為求反函數的定義域。

  高一數學(xué)知識點(diǎn)歸納總結2

  二次函數

  I.定義與定義表達式

  一般地,自變量x和因變量y之間存在如下關(guān)系:y=ax^2+bx+c

  (a,b,c為常數,a≠0,且a決定函數的開(kāi)口方向,a>0時(shí),開(kāi)口方向向上,a<0時(shí),開(kāi)口方向向下,IaI還可以決定開(kāi)口大小,IaI越大開(kāi)口就越小,IaI越小開(kāi)口就越大.)

  則稱(chēng)y為x的二次函數。

  二次函數表達式的右邊通常為二次三項式。

  II.二次函數的三種表達式

  一般式:y=ax^2+bx+c(a,b,c為常數,a≠0)

  頂點(diǎn)式:y=a(x-h)^2+k[拋物線(xiàn)的頂點(diǎn)P(h,k)]

  交點(diǎn)式:y=a(x-x?)(x-x?)[僅限于與x軸有交點(diǎn)A(x?,0)和B(x?,0)的拋物線(xiàn)]

  注:在3種形式的互相轉化中,有如下關(guān)系:

  h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2a

  III.二次函數的圖像

  在平面直角坐標系中作出二次函數y=x^2的圖像,可以看出,二次函數的圖像是一條拋物線(xiàn)。

  IV.拋物線(xiàn)的性質(zhì)

  1.拋物線(xiàn)是軸對稱(chēng)圖形。對稱(chēng)軸為直線(xiàn)x=-b/2a。對稱(chēng)軸與拋物線(xiàn)的交點(diǎn)為拋物線(xiàn)的頂點(diǎn)P。

  特別地,當b=0時(shí),拋物線(xiàn)的對稱(chēng)軸是y軸(即直線(xiàn)x=0)

  2.拋物線(xiàn)有一個(gè)頂點(diǎn)P,坐標為

  P(-b/2a,(4ac-b^2)/4a)

  當-b/2a=0時(shí),P在y軸上;當Δ=b^2-4ac=0時(shí),P在x軸上。

  3.二次項系數a決定拋物線(xiàn)的開(kāi)口方向和大小。

  當a>0時(shí),拋物線(xiàn)向上開(kāi)口;當a<0時(shí),拋物線(xiàn)向下開(kāi)口。

  |a|越大,則拋物線(xiàn)的開(kāi)口越小。

  高一數學(xué)知識點(diǎn)歸納總結3

  一、指數函數

 。ㄒ唬┲笖蹬c指數冪的運算

  1、根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈

  當是奇數時(shí),正數的次方根是一個(gè)正數,負數的次方根是一個(gè)負數。此時(shí),的次方根用符號表示。式子叫做根式(radical),這里叫做根指數(radicalexponent),叫做被開(kāi)方數(radicand)。

  當是偶數時(shí),正數的次方根有兩個(gè),這兩個(gè)數互為相反數。此時(shí),正數的正的次方根用符號表示,負的次方根用符號—表示。正的次方根與負的次方根可以合并成±(>0)。由此可得:負數沒(méi)有偶次方根;0的任何次方根都是0,記作。

  注意:當是奇數時(shí),當是偶數時(shí),

  2、分數指數冪

  正數的分數指數冪的意義,規定:

  0的正分數指數冪等于0,0的負分數指數冪沒(méi)有意義

  指出:規定了分數指數冪的意義后,指數的概念就從整數指數推廣到了有理數指數,那么整數指數冪的運算性質(zhì)也同樣可以推廣到有理數指數冪。

  3、實(shí)數指數冪的運算性質(zhì)

 。ǘ┲笖岛瘮导捌湫再|(zhì)

  1、指數函數的概念:一般地,函數叫做指數函數(exponential),其中x是自變量,函數的定義域為R。

  注意:指數函數的底數的取值范圍,底數不能是負數、零和1。

  2、指數函數的圖象和性質(zhì)

  高一數學(xué)知識點(diǎn)歸納總結4

  指數函數

  (1)指數函數的定義域為所有實(shí)數的集合,這里的前提是a大于0,對于a不大于0的情況,則必然使得函數的定義域不存在連續的區間,因此我們不予考慮。

  (2)指數函數的值域為大于0的實(shí)數集合。

  (3)函數圖形都是下凹的。

  (4)a大于1,則指數函數單調遞增;a小于1大于0,則為單調遞減的。

  (5)可以看到一個(gè)顯然的規律,就是當a從0趨向于無(wú)窮大的過(guò)程中(當然不能等于0),函數的曲線(xiàn)從分別接近于Y軸與X軸的正半軸的單調遞減函數的位置,趨向分別接近于Y軸的正半軸與X軸的負半軸的單調遞增函數的位置。其中水平直線(xiàn)y=1是從遞減到遞增的一個(gè)過(guò)渡位置。

  (6)函數總是在某一個(gè)方向上無(wú)限趨向于X軸,永不相交。

  (7)函數總是通過(guò)(0,1)這點(diǎn)。

  (8)顯然指數函數無(wú)界。

  奇偶性

  定義

  一般地,對于函數f(x)

  (1)如果對于函數定義域內的任意一個(gè)x,都有f(-x)=-f(x),那么函數f(x)就叫做奇函數。

  (2)如果對于函數定義域內的任意一個(gè)x,都有f(-x)=f(x),那么函數f(x)就叫做偶函數。

  (3)如果對于函數定義域內的任意一個(gè)x,f(-x)=-f(x)與f(-x)=f(x)同時(shí)成立,那么函數f(x)既是奇函數又是偶函數,稱(chēng)為既奇又偶函數。

  (4)如果對于函數定義域內的任意一個(gè)x,f(-x)=-f(x)與f(-x)=f(x)都不能成立,那么函數f(x)既不是奇函數又不是偶函數,稱(chēng)為非奇非偶函數。

  高一數學(xué)知識點(diǎn)歸納總結5

  一:集合的含義與表示

  1、集合的含義:集合為一些確定的、不同的東西的全體,人們能意識到這些東西,并且能判斷一個(gè)給定的東西是否屬于這個(gè)整體。

  把研究對象統稱(chēng)為元素,把一些元素組成的總體叫集合,簡(jiǎn)稱(chēng)為集。

  2、集合的中元素的三個(gè)特性:

  (1)元素的確定性:集合確定,則一元素是否屬于這個(gè)集合是確定的:屬于或不屬于。

  (2)元素的互異性:一個(gè)給定集合中的元素是的,不可重復的。

  (3)元素的無(wú)序性:集合中元素的位置是可以改變的,并且改變位置不影響集合

  3、集合的表示:{…}

  (1)用大寫(xiě)字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

  (2)集合的表示方法:列舉法與描述法。

  a、列舉法:將集合中的元素一一列舉出來(lái){a,b,c……}

  b、描述法:

 、賲^間法:將集合中元素的公共屬性描述出來(lái),寫(xiě)在大括號內表示集合。

  {x?R|x-3>2},{x|x-3>2}

 、谡Z(yǔ)言描述法:例:{不是直角三角形的三角形}

 、踁enn圖:畫(huà)出一條封閉的曲線(xiàn),曲線(xiàn)里面表示集合。

  4、集合的分類(lèi):

  (1)有限集:含有有限個(gè)元素的集合

  (2)無(wú)限集:含有無(wú)限個(gè)元素的集合

  (3)空集:不含任何元素的集合

  5、元素與集合的關(guān)系:

  (1)元素在集合里,則元素屬于集合,即:a?A

  (2)元素不在集合里,則元素不屬于集合,即:a¢A

  注意:常用數集及其記法:

  非負整數集(即自然數集)記作:N

  正整數集N_或N+

  整數集Z

  有理數集Q

  實(shí)數集R

  6、集合間的基本關(guān)系

  包含”關(guān)系—子集

  定義:如果集合A的任何一個(gè)元素都是集合B的元素,我們說(shuō)這兩個(gè)集合有包含關(guān)系,稱(chēng)集合A是集合B的子集。

  高一數學(xué)知識點(diǎn)歸納總結6

  圓的方程定義:

  圓的標準方程(x—a)2+(y—b)2=r2中,有三個(gè)參數a、b、r,即圓心坐標為(a,b),只要求出a、b、r,這時(shí)圓的方程就被確定,因此確定圓方程,須三個(gè)獨立條件,其中圓心坐標是圓的定位條件,半徑是圓的定形條件。

  直線(xiàn)和圓的位置關(guān)系:

  1、直線(xiàn)和圓位置關(guān)系的判定方法一是方程的觀(guān)點(diǎn),即把圓的方程和直線(xiàn)的方程聯(lián)立成方程組,利用判別式Δ來(lái)討論位置關(guān)系。

 、佴>0,直線(xiàn)和圓相交

 、讦=0,直線(xiàn)和圓相切

 、郐<0,直線(xiàn)和圓相離。

  方法二是幾何的觀(guān)點(diǎn),即把圓心到直線(xiàn)的距離d和半徑R的大小加以比較。

 、賒R,直線(xiàn)和圓相離、

  2、直線(xiàn)和圓相切,這類(lèi)問(wèn)題主要是求圓的切線(xiàn)方程、求圓的切線(xiàn)方程主要可分為已知斜率k或已知直線(xiàn)上一點(diǎn)兩種情況,而已知直線(xiàn)上一點(diǎn)又可分為已知圓上一點(diǎn)和圓外一點(diǎn)兩種情況。

  3、直線(xiàn)和圓相交,這類(lèi)問(wèn)題主要是求弦長(cháng)以及弦的中點(diǎn)問(wèn)題。

  切線(xiàn)的性質(zhì)

 、艌A心到切線(xiàn)的距離等于圓的半徑;

 、七^(guò)切點(diǎn)的半徑垂直于切線(xiàn);

 、墙(jīng)過(guò)圓心,與切線(xiàn)垂直的直線(xiàn)必經(jīng)過(guò)切點(diǎn);

 、冉(jīng)過(guò)切點(diǎn),與切線(xiàn)垂直的直線(xiàn)必經(jīng)過(guò)圓心;

  當一條直線(xiàn)滿(mǎn)足

 。1)過(guò)圓心;

 。2)過(guò)切點(diǎn);

 。3)垂直于切線(xiàn)三個(gè)性質(zhì)中的兩個(gè)時(shí),第三個(gè)性質(zhì)也滿(mǎn)足。

  切線(xiàn)的判定定理

  經(jīng)過(guò)半徑的外端點(diǎn)并且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn)。

  切線(xiàn)長(cháng)定理

  從圓外一點(diǎn)作圓的兩條切線(xiàn),兩切線(xiàn)長(cháng)相等,圓心與這一點(diǎn)的連線(xiàn)平分兩條切線(xiàn)的夾角。

  高一數學(xué)知識點(diǎn)歸納總結7

  1.多面體的結構特征

  (1)棱柱有兩個(gè)面相互平行,其余各面都是平行四邊形,每相鄰兩個(gè)四邊形的公共邊平行。

  正棱柱:側棱垂直于底面的棱柱叫做直棱柱,底面是正多邊形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多邊形,側棱垂直于底面,側面是矩形。

  (2)棱錐的底面是任意多邊形,側面是有一個(gè)公共頂點(diǎn)的三角形。

  正棱錐:底面是正多邊形,頂點(diǎn)在底面的射影是底面正多邊形的中心的棱錐叫做正棱錐.特別地,各棱均相等的正三棱錐叫正四面體.反過(guò)來(lái),正棱錐的底面是正多邊形,且頂點(diǎn)在底面的射影是底面正多邊形的中心。

  (3)棱臺可由平行于底面的平面截棱錐得到,其上下底面是相似多邊形。

  2.旋轉體的結構特征

  (1)圓柱可以由矩形繞一邊所在直線(xiàn)旋轉一周得到.

  (2)圓錐可以由直角三角形繞一條直角邊所在直線(xiàn)旋轉一周得到.

  (3)圓臺可以由直角梯形繞直角腰所在直線(xiàn)旋轉一周或等腰梯形繞上下底面中心所在直線(xiàn)旋轉半周得到,也可由平行于底面的平面截圓錐得到。

  (4)球可以由半圓面繞直徑旋轉一周或圓面繞直徑旋轉半周得到。

  3.空間幾何體的三視圖

  空間幾何體的三視圖是用平行投影得到,這種投影下,與投影面平行的平面圖形留下的影子,與平面圖形的形狀和大小是全等和相等的,三視圖包括正視圖、側視圖、俯視圖。

  三視圖的長(cháng)度特征:“長(cháng)對正,寬相等,高平齊”,即正視圖和側視圖一樣高,正視圖和俯視圖一樣長(cháng),側視圖和俯視圖一樣寬.若相鄰兩物體的表面相交,表面的交線(xiàn)是它們的分界線(xiàn),在三視圖中,要注意實(shí)、虛線(xiàn)的畫(huà)法。

  4.空間幾何體的直觀(guān)圖

  空間幾何體的直觀(guān)圖常用斜二測畫(huà)法來(lái)畫(huà),基本步驟是:

  (1)畫(huà)幾何體的底面

  在已知圖形中取互相垂直的x軸、y軸,兩軸相交于點(diǎn)O,畫(huà)直觀(guān)圖時(shí),把它們畫(huà)成對應的x′軸、y′軸,兩軸相交于點(diǎn)O′,且使∠x(chóng)′O′y′=45°或135°,已知圖形中平行于x軸、y軸的線(xiàn)段,在直觀(guān)圖中平行于x′軸、y′軸.已知圖形中平行于x軸的線(xiàn)段,在直觀(guān)圖中長(cháng)度不變,平行于y軸的線(xiàn)段,長(cháng)度變?yōu)樵瓉?lái)的一半。

  (2)畫(huà)幾何體的高

  在已知圖形中過(guò)O點(diǎn)作z軸垂直于xOy平面,在直觀(guān)圖中對應的z′軸,也垂直于x′O′y′平面,已知圖形中平行于z軸的線(xiàn)段,在直觀(guān)圖中仍平行于z′軸且長(cháng)度不變。

  高一數學(xué)知識點(diǎn)歸納總結8

  一、立體幾何常用公式

  S(圓柱全面積)=2πr(r+L);

  V(圓柱體積)=Sh;

  S(圓錐全面積)=πr(r+L);

  V(圓錐體積)=1/3Sh;

  S(圓臺全面積)=π(r^2+R^2+rL+RL);

  V(圓臺體積)=1/3[s+S+√(s+S)]h;

  S(球面積)=4πR^2;

  V(球體積)=4/3πR^3.

  二、立體幾何常用定理

  (1)用一個(gè)平面去截一個(gè)球,截面是圓面.

  (2)球心和截面圓心的連線(xiàn)垂直于截面.

  (3)球心到截面的距離d與球的半徑R及截面半徑r有下面關(guān)系:r=√(R^2-d^2).

  (4)球面被經(jīng)過(guò)球心的平面載得的圓叫做大圓,被不經(jīng)過(guò)球心的載面截得的圓叫做小圓.

  (5)在球面上兩點(diǎn)之間連線(xiàn)的最短長(cháng)度,就是經(jīng)過(guò)這兩點(diǎn)的大圓在這兩點(diǎn)間的一段劣弧的長(cháng)度,這個(gè)弧長(cháng)叫做兩點(diǎn)間的球面距離.

  高一數學(xué)知識點(diǎn)歸納總結9

  一、指數函數的定義

  指數函數的一般形式為y=a^x(a0且≠1)(x∈R).

  二、指數函數的性質(zhì)

  1.曲線(xiàn)沿x軸方向向左無(wú)限延展〈=〉函數的定義域為(-∞,+∞)

  2.曲線(xiàn)在x軸上方,而且向左或向右隨著(zhù)x值的減小或增大無(wú)限靠近X軸(x軸是曲線(xiàn)的漸近線(xiàn))〈=〉函數的值域為(0,+∞)

  一、對數與對數函數定義

  1.對數:一般地,如果a(a大于0,且a不等于1)的b次冪等于N,那么數b叫做以a為底N的對數,記作logaN=b,讀作以a為底N的對數,其中a叫做對數的底數,N叫做真數。

  2.對數函數:一般地,函數y=log(a)X,(其中a是常數,a0且a不等于1)叫做對數函數,它實(shí)際上就是指數函數的反函數,因此指數函數里對于a的規定,同樣適用于對數函數。

  二、方法點(diǎn)撥

  在解決函數的綜合性問(wèn)題時(shí),要根據題目的具體情況把問(wèn)題分解為若干小問(wèn)題一次解決,然后再整合解決的結果,這也是分類(lèi)與整合思想的一個(gè)重要方面。

  一、冪函數定義

  形如y=x^a(a為常數)的函數,即以底數為自變量?jì)鐬橐蜃兞,指數為常量的函數稱(chēng)為冪函數。

  二、性質(zhì)

  冪函數不經(jīng)過(guò)第三象限,如果該函數的指數的分子n是偶數,而分母m是任意整數,則y0,圖像在第一;二象限.這時(shí)(-1)^p的指數p的奇偶性無(wú)關(guān).

  如果函數的指數的分母m是偶數,而分子n是任意整數,則x0(或xy0(或y=0),圖像在第一象限.與p的奇偶性關(guān)系不大,

  高一數學(xué)知識點(diǎn)歸納總結10

  一、點(diǎn)、線(xiàn)、面概念與符號

  平面α、β、γ,直線(xiàn)a、b、c,點(diǎn)A、B、C;

  A∈a——點(diǎn)A在直線(xiàn)a上或直線(xiàn)a經(jīng)過(guò)點(diǎn);

  aα——直線(xiàn)a在平面α內;

  α∩β=a——平面α、β的交線(xiàn)是a;

  α∥β——平面α、β平行;

  β⊥γ——平面β與平面γ垂直.

  二、點(diǎn)、線(xiàn)、面常用定理

  1.異面直線(xiàn)判斷定理

  過(guò)平面外一點(diǎn)與平面內一點(diǎn)的直線(xiàn),和平面內不過(guò)該點(diǎn)的直線(xiàn)是異面直線(xiàn).

  2.線(xiàn)與線(xiàn)平行的判定定理

  (1)平行于同一直線(xiàn)的兩條直線(xiàn)平行;

  (2)垂直于同一平面的兩條直線(xiàn)平行;

  (3)如果一條直線(xiàn)和一個(gè)平面平行,經(jīng)過(guò)這條直線(xiàn)的平面和這個(gè)平面相交,那么這條直線(xiàn)和交線(xiàn)平行;

  (4)如果兩個(gè)平行平面同時(shí)和第三個(gè)平面相交,那么它們的交線(xiàn)平行;

  (5)如果一條直線(xiàn)平行于兩個(gè)相交平面,那么這條直線(xiàn)平行于兩個(gè)平面的交線(xiàn).

  3.線(xiàn)與線(xiàn)垂直的判定

  若一條直線(xiàn)垂直于一個(gè)平面,那么這條直線(xiàn)垂直于平面內所有直線(xiàn).

  4.線(xiàn)與面平行的判定

  (1)平面外一條直線(xiàn)和平面內一條直線(xiàn)平行,則該直線(xiàn)與此平面平行;

  (2)若兩個(gè)平面平行,則在一個(gè)平面內的任何一條直線(xiàn)必平行于另一個(gè)平面.

  高一數學(xué)知識點(diǎn)歸納總結11

  本節知識包括函數的單調性、函數的奇偶性、函數的周期性、函數的最值、函數的對稱(chēng)性和函數的圖象等知識點(diǎn)。函數的單調性、函數的奇偶性、函數的周期性、函數的最值、函數的對稱(chēng)性是學(xué)習函數的圖象的基礎,函數的圖象是它們的綜合。所以理解了前面的幾個(gè)知識點(diǎn),函數的圖象就迎刃而解了。

  一、函數的單調性

  1、函數單調性的定義

  2、函數單調性的判斷和證明:

  (1)定義法

  (2)復合函數分析法

  (3)導數證明法

  (4)圖象法

  二、函數的奇偶性和周期性

  1、函數的奇偶性和周期性的定義

  2、函數的奇偶性的判定和證明方法

  3、函數的周期性的判定方法

  三、函數的圖象

  函數圖象的作法

  (1)描點(diǎn)法

  (2)圖象變換法

  2、圖象變換包括圖象:平移變換、伸縮變換、對稱(chēng)變換、翻折變換。

  常見(jiàn)考法

  本節是段考和高考必不可少的考查內容,是段考和高考考查的重點(diǎn)和難點(diǎn)。選擇題、填空題和解答題都有,并且題目難度較大。在解答題中,它可以和高中數學(xué)的每一章聯(lián)合考查,多屬于拔高題。多考查函數的單調性、最值和圖象等。

  誤區提醒

  1、求函數的單調區間,必須先求函數的定義域,即遵循“函數問(wèn)題定義域優(yōu)先的原則”。

  2、單調區間必須用區間來(lái)表示,不能用集合或不等式,單調區間一般寫(xiě)成開(kāi)區間,不必考慮端點(diǎn)問(wèn)題。

  3、在多個(gè)單調區間之間不能用“或”和“”連接,只能用逗號隔開(kāi)。

  4、判斷函數的奇偶性,首先必須考慮函數的定義域,如果函數的定義域不關(guān)于原點(diǎn)對稱(chēng),則函數一定是非奇非偶函數。

  5、作函數的圖象,一般是首先化簡(jiǎn)解析式,然后確定用描點(diǎn)法或圖象變換法作函數的圖象。

  高一數學(xué)知識點(diǎn)歸納總結12

  集合間的基本關(guān)系

  1、“包含”關(guān)系—子集

  注意:有兩種可能

 。1)A是B的一部分,;

 。2)A與B是同一集合。

  反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA

  2、“相等”關(guān)系:A=B(5≥5,且5≤5,則5=5)

  實(shí)例:設A={x|x2—1=0}B={—1,1}“元素相同則兩集合相等”

  即:①任何一個(gè)集合是它本身的子集。AA

 、谡孀蛹喝绻鸄B,且AB那就說(shuō)集合A是集合B的真子集,記作AB(或BA)

 、廴绻鸄B,BC,那么AC

 、苋绻鸄B同時(shí)BA那么A=B

  3、不含任何元素的集合叫做空集,記為Φ

  規定:空集是任何集合的子集,空集是任何非空集合的真子集。

  有n個(gè)元素的集合,含有2n個(gè)子集,2n—1個(gè)真子集

  集合的運算

  運算類(lèi)型交集并集補集

  定義由所有屬于A(yíng)且屬于B的元素所組成的集合,叫做A,B的交集。記作AB(讀作‘A交B’),即AB={x|xA,且xB}。

  由所有屬于集合A或屬于集合B的元素所組成的集合,叫做A,B的并集。記作:AB(讀作‘A并B’),即AB={x|xA,或xB})。

  設S是一個(gè)集合,A是S的一個(gè)子集,由S中所有不屬于A(yíng)的元素組成的集合,叫做S中子集A的補集(或余集)

  高一數學(xué)知識點(diǎn)歸納總結13

  一、函數的概念與表示

  1、映射

  (1)映射:設A、B是兩個(gè)集合,如果按照某種映射法則f,對于集合A中的任一個(gè)元素,在集合B中都有唯一的元素和它對應,則這樣的對應(包括集合A、B以及A到B的對應法則f)叫做集合A到集合B的映射,記作f:A→B。

  注意點(diǎn):

  (1)對映射定義的理解。

  (2)判斷一個(gè)對應是映射的方法。一對多不是映射,多對一是映射

  2、函數

  構成函數概念的三要素

 、俣x域

 、趯▌t

 、壑涤

  兩個(gè)函數是同一個(gè)函數的條件:三要素有兩個(gè)相同

  二、函數的解析式與定義域

  1、求函數定義域的主要依據:

  (1)分式的分母不為零;

  (2)偶次方根的被開(kāi)方數不小于零,零取零次方?jīng)]有意義;

  (3)對數函數的真數必須大于零;

  (4)指數函數和對數函數的底數必須大于零且不等于1;

  三、函數的值域

  1求函數值域的方法

 、僦苯臃ǎ簭淖宰兞縳的范圍出發(fā),推出y=f(x)的取值范圍,適合于簡(jiǎn)單的復合函數;

 、趽Q元法:利用換元法將函數轉化為二次函數求值域,適合根式內外皆為一次式;

 、叟袆e式法:運用方程思想,依據二次方程有根,求出y的取值范圍;適合分母為二次且∈R的分式;

 、芊蛛x常數:適合分子分母皆為一次式(x有范圍限制時(shí)要畫(huà)圖);

 、輪握{性法:利用函數的單調性求值域;

 、迗D象法:二次函數必畫(huà)草圖求其值域;

 、呃脤μ柡瘮

 、鄮缀我饬x法:由數形結合,轉化距離等求值域。主要是含絕對值函數

  四.函數的奇偶性

  1.定義:設y=f(x),x∈A,如果對于任意∈A,都有,則稱(chēng)y=f(x)為偶函數。

  如果對于任意∈A,都有,則稱(chēng)y=f(x)為奇

  函數。

  2.性質(zhì):

 、賧=f(x)是偶函數y=f(x)的圖象關(guān)于軸對稱(chēng),y=f(x)是奇函數y=f(x)的圖象關(guān)于原點(diǎn)對稱(chēng),

 、谌艉瘮礷(x)的定義域關(guān)于原點(diǎn)對稱(chēng),則f(0)=0

 、燮妗榔=奇偶±偶=偶奇×奇=偶偶×偶=偶奇×偶=奇[兩函數的定義域D1,D2,D1∩D2要關(guān)于原點(diǎn)對稱(chēng)]

  3.奇偶性的判斷

 、倏炊x域是否關(guān)于原點(diǎn)對稱(chēng)

 、诳磃(x)與f(-x)的關(guān)系

  五、函數的單調性

  1、函數單調性的定義:

  2、設是定義在M上的函數,若f(x)與g(x)的單調性相反,則在M上是減函數;若f(x)與g(x)的單調性相同,則在M上是增函數。

  高一數學(xué)知識點(diǎn)歸納總結14

  一、圓錐曲線(xiàn)的定義

  1.橢圓:到兩個(gè)定點(diǎn)的距離之和等于定長(cháng)(定長(cháng)大于兩個(gè)定點(diǎn)間的距離)的動(dòng)點(diǎn)的軌跡叫做橢圓.

  2.雙曲線(xiàn):到兩個(gè)定點(diǎn)的距離的差的絕對值為定值(定值小于兩個(gè)定點(diǎn)的距離)的動(dòng)點(diǎn)軌跡叫做雙曲線(xiàn).即.

  3.圓錐曲線(xiàn)的統一定義:到定點(diǎn)的距離與到定直線(xiàn)的距離的比e是常數的點(diǎn)的軌跡叫做圓錐曲線(xiàn).當01時(shí)為雙曲線(xiàn).

  二、圓錐曲線(xiàn)的方程

  1.橢圓:+=1(a>b>0)或+=1(a>b>0)(其中,a2=b2+c2)

  2.雙曲線(xiàn):-=1(a>0,b>0)或-=1(a>0,b>0)(其中,c2=a2+b2)

  3.拋物線(xiàn):y2=±2px(p>0),x2=±2py(p>0)

  三、圓錐曲線(xiàn)的性質(zhì)

  1.橢圓:+=1(a>b>0)

  (1)范圍:|x|≤a,|y|≤b

  (2)頂點(diǎn):(±a,0),(0,±b)

  (3)焦點(diǎn):(±c,0)(4)離心率:e=∈(0,1)

  (5)準線(xiàn):x=±

  2.雙曲線(xiàn):-=1(a>0,b>0)

  (1)范圍:|x|≥a,y∈R

  (2)頂點(diǎn):(±a,0)

  (3)焦點(diǎn):(±c,0)

  (4)離心率:e=∈(1,+∞)(5)準線(xiàn):x=±(6)漸近線(xiàn):y=±x

  3.拋物線(xiàn):y2=2px(p>0)

  (1)范圍:x≥0,y∈R

  (2)頂點(diǎn):(0,0)

  (3)焦點(diǎn):(,0)

  (4)離心率:e=1

  (5)準線(xiàn):x=-

  高一數學(xué)知識點(diǎn)歸納總結15

  冪函數的性質(zhì):

  對于a的取值為非零有理數,有必要分成幾種情況來(lái)討論各自的特性:

  首先我們知道如果a=p/q,q和p都是整數,則x^(p/q)=q次根號(x的p次方),如果q是奇數,函數的定義域是R,如果q是偶數,函數的定義域是[0,+∞)。當指數n是負整數時(shí),設a=—k,則x=1/(x^k),顯然x≠0,函數的定義域是(—∞,0)∪(0,+∞)。因此可以看到x所受到的限制來(lái)源于兩點(diǎn),一是有可能作為分母而不能是0,一是有可能在偶數次的根號下而不能為負數,那么我們就可以知道:

  排除了為0與負數兩種可能,即對于x>0,則a可以是任意實(shí)數;

  排除了為0這種可能,即對于x<0x="">0的所有實(shí)數,q不能是偶數;

  排除了為負數這種可能,即對于x為大于且等于0的所有實(shí)數,a就不能是負數。

  總結起來(lái),就可以得到當a為不同的數值時(shí),冪函數的定義域的不同情況如下:如果a為任意實(shí)數,則函數的定義域為大于0的所有實(shí)數;

  如果a為負數,則x肯定不能為0,不過(guò)這時(shí)函數的定義域還必須根據q的奇偶性來(lái)確定,即如果同時(shí)q為偶數,則x不能小于0,這時(shí)函數的定義域為大于0的所有實(shí)數;如果同時(shí)q為奇數,則函數的定義域為不等于0的所有實(shí)數。

  在x大于0時(shí),函數的值域總是大于0的實(shí)數。

  在x小于0時(shí),則只有同時(shí)q為奇數,函數的值域為非零的實(shí)數。

  而只有a為正數,0才進(jìn)入函數的值域。

  由于x大于0是對a的任意取值都有意義的,因此下面給出冪函數在第一象限的各自情況。

  可以看到:

 。1)所有的圖形都通過(guò)(1,1)這點(diǎn)。

 。2)當a大于0時(shí),冪函數為單調遞增的,而a小于0時(shí),冪函數為單調遞減函數。

 。3)當a大于1時(shí),冪函數圖形下凹;當a小于1大于0時(shí),冪函數圖形上凸。

 。4)當a小于0時(shí),a越小,圖形傾斜程度越大。

 。5)a大于0,函數過(guò)(0,0);a小于0,函數不過(guò)(0,0)點(diǎn)。

 。6)顯然冪函數。

  解題方法:換元法

  解數學(xué)題時(shí),把某個(gè)式子看成一個(gè)整體,用一個(gè)變量去代替它,從而使問(wèn)題得到簡(jiǎn)化,這種方法叫換元法。換元的實(shí)質(zhì)是轉化,關(guān)鍵是構造元和設元,理論依據是等量代換,目的是變換研究對象,將問(wèn)題移至新對象的知識背景中去研究,從而使非標準型問(wèn)題標準化、復雜問(wèn)題簡(jiǎn)單化,變得容易處理。

  換元法又稱(chēng)輔助元素法、變量代換法。通過(guò)引進(jìn)新的變量,可以把分散的條件聯(lián)系起來(lái),隱含的條件顯露出來(lái),或者把條件與結論聯(lián)系起來(lái);蛘咦?yōu)槭煜さ男问,把復雜的計算和推證簡(jiǎn)化。

  它可以化高次為低次、化分式為整式、化無(wú)理式為有理式、化超越式為代數式,在研究方程、不等式、函數、數列、三角等問(wèn)題中有廣泛的應用。

【高一數學(xué)知識點(diǎn)歸納總結】相關(guān)文章:

高一數學(xué)函數知識點(diǎn)歸納總結09-08

高一數學(xué)知識點(diǎn)總結歸納09-08

高一數學(xué)知識點(diǎn)歸納總結12-17

高一數學(xué)必修一知識點(diǎn)總結歸納02-15

高一數學(xué)知識點(diǎn)重點(diǎn)總結歸納09-23

高一數學(xué)必修一知識點(diǎn)總結歸納01-14

高一數學(xué)知識點(diǎn)總結歸納9篇10-08

高一數學(xué)知識點(diǎn)總結歸納7篇09-08

高一數學(xué)知識點(diǎn)歸納總結精選13篇12-18

高一數學(xué)知識點(diǎn)歸納總結13篇12-17