成人免费看黄网站无遮挡,caowo999,se94se欧美综合色,a级精品九九九大片免费看,欧美首页,波多野结衣一二三级,日韩亚洲欧美综合

相交弦定理證明過(guò)程

回答
瑞文問(wèn)答

2024-09-05

相交弦定理,經(jīng)過(guò)圓內一點(diǎn)引兩條弦,各弦被這點(diǎn)所分成的兩線(xiàn)段的積相等。幾何語(yǔ)言:若圓內任意弦AB、弦CD交于點(diǎn)P,則PA·PB=PC·PD(相交弦定理)。

擴展資料

  相交弦定理證明

相交弦定理證明過(guò)程

  證明:連結AC,BD

  由圓周角定理的推論,得∠A=∠D,∠C=∠B。(圓周角推論2: 在同圓或等圓中,同(等)弧所對圓周角相等.)

  ∴△PAC∽△PDB

  ∴PA∶PD=PC∶PB,PA·PB=PC·PD

  注:其逆定理可作為證明四邊形是圓的內接四邊形的方法. P點(diǎn)若選在圓內任意一點(diǎn)更具一般性。其逆定理也可用于證明四點(diǎn)共圓。