成人免费看黄网站无遮挡,caowo999,se94se欧美综合色,a级精品九九九大片免费看,欧美首页,波多野结衣一二三级,日韩亚洲欧美综合

勾股定理的說(shuō)課稿

時(shí)間:2022-07-25 10:24:44 說(shuō)課稿 我要投稿

勾股定理的說(shuō)課稿范文(精選7篇)

  作為一名默默奉獻的教育工作者,通常需要用到說(shuō)課稿來(lái)輔助教學(xué),說(shuō)課稿是進(jìn)行說(shuō)課準備的文稿,有著(zhù)至關(guān)重要的作用。寫(xiě)說(shuō)課稿需要注意哪些格式呢?下面是小編整理的勾股定理的說(shuō)課稿范文,僅供參考,歡迎大家閱讀。

勾股定理的說(shuō)課稿范文(精選7篇)

  勾股定理的說(shuō)課稿 篇1

  一、教材分析

  勾股定理是學(xué)生在已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎上進(jìn)行學(xué)習的,它是直角三角形的一條非常重要的性質(zhì),是幾何中最重要的定理之一,它揭示了一個(gè)三角形三條邊之間的數量關(guān)系,它可以解決直角三角形中的計算問(wèn)題,是解直角三角形的主要根據之一,在實(shí)際生活中用途很大。教材在編寫(xiě)時(shí)注意培養學(xué)生的動(dòng)手操作能力和分析問(wèn)題的能力,通過(guò)實(shí)際分析、拼圖等活動(dòng),使學(xué)生獲得較為直觀(guān)的印象;通過(guò)聯(lián)系和比較,理解勾股定理,以利于正確的進(jìn)行運用。

  據此,制定教學(xué)目標如下:

  1、理解并掌握勾股定理及其證明。

  2、能夠靈活地運用勾股定理及其計算。

  3、培養學(xué)生觀(guān)察、比較、分析、推理的能力。

  4、通過(guò)介紹中國古代勾股方面的成就,激發(fā)學(xué)生熱愛(ài)祖國與熱愛(ài)祖國悠久文化的思想感情,培養他們的民族自豪感和鉆研精神。

  教學(xué)重點(diǎn):勾股定理的證明和應用。

  教學(xué)難點(diǎn):勾股定理的證明。

  二、教法和學(xué)法

  教法和學(xué)法是體現在整個(gè)教學(xué)過(guò)程中的,本課的教法和學(xué)法體現如下特點(diǎn):

  1、以自學(xué)輔導為主,充分發(fā)揮教師的主導作用,運用各種手段激發(fā)學(xué)生學(xué)習欲望和興趣,組織學(xué)生活動(dòng),讓學(xué)生主動(dòng)參與學(xué)習全過(guò)程。

  2、切實(shí)體現學(xué)生的主體地位,讓學(xué)生通過(guò)觀(guān)察、分析、討論、操作、歸納,理解定理,提高學(xué)生動(dòng)手操作能力,以及分析問(wèn)題和解決問(wèn)題的能力。

  3、通過(guò)演示實(shí)物,引導學(xué)生觀(guān)察、操作、分析、證明,使學(xué)生得到獲得新知的成功感受,從而激發(fā)學(xué)生鉆研新知的欲望。

  三、教學(xué)程序

  本節內容的教學(xué)主要體現在學(xué)生動(dòng)手、動(dòng)腦方面,根據學(xué)生的認知規律和學(xué)習心理,教學(xué)程序設計如下:

 。ㄒ唬﹦(chuàng )設情境 以古引新

  1、由故事引入,3000多年前有個(gè)叫商高的人對周公說(shuō),把一根直尺折成直角,兩端連接得到一個(gè)直角三角形,如果勾是3,股是4,那么弦等于5。這樣引起學(xué)生學(xué)習興趣,激發(fā)學(xué)生求知欲。

  2、是不是所有的直角三角形都有這個(gè)性質(zhì)呢?教師要善于激疑,使學(xué)生進(jìn)入樂(lè )學(xué)狀態(tài)。

  3、板書(shū)課題,出示學(xué)習目標。

 。ǘ┏醪礁兄 理解教材

  教師指導學(xué)生自學(xué)教材,通過(guò)自學(xué)感悟理解新知,體現了學(xué)生的自主學(xué)習意識,鍛煉學(xué)生主動(dòng)探究知識,養成良好的自學(xué)習慣。

 。ㄈ┵|(zhì)疑解難 討論歸納

  1、教師設疑或學(xué)生提疑。如:怎樣證明勾股定理?學(xué)生通過(guò)自學(xué),中等以上的學(xué)生基本掌握,這時(shí)能激發(fā)學(xué)生的表現欲。

  2、教師引導學(xué)生按照要求進(jìn)行拼圖,觀(guān)察并分析;

 。1)這兩個(gè)圖形有什么特點(diǎn)?

 。2)你能寫(xiě)出這兩個(gè)圖形的面積嗎?

 。3)如何運用勾股定理?是否還有其他形式?

  這時(shí)教師組織學(xué)生分組討論,調動(dòng)全體學(xué)生的積極性,達到人人參與的效果,接著(zhù)全班交流。先有某一組代表發(fā)言,說(shuō)明本組對問(wèn)題的理解程度,其他各組作評價(jià)和補充。教師及時(shí)進(jìn)行富有啟發(fā)性的點(diǎn)撥,最后,師生共同歸納,形成一致意見(jiàn),最終解決疑難。

 。ㄋ模╈柟叹毩 強化提高

  1、出示練習,學(xué)生分組解答,并由學(xué)生總結解題規律。課堂教學(xué)中動(dòng)靜結合,以免引起學(xué)生的疲勞。

  2、出示例1學(xué)生試解,師生共同評價(jià),以加深對例題的理解與運用。針對例題再次出現鞏固練習,進(jìn)一步提高學(xué)生運用知識的能力,對練習中出現的情況可采取互評、互議的形式,在互評互議中出現的具有代表性的問(wèn)題,教師可以采取全班討論的形式予以解決,以此突出教學(xué)重點(diǎn)。

 。ㄎ澹w納總結 練習反饋

  引導學(xué)生對知識要點(diǎn)進(jìn)行總結,梳理學(xué)習思路。分發(fā)自我反饋練習,學(xué)生獨立完成。

  本課意在創(chuàng )設愉悅和諧的樂(lè )學(xué)氣氛,優(yōu)化教學(xué)手段,借助電教手段提高課堂教學(xué)效率,建立平等、民主、和諧的師生關(guān)系。加強師生間的合作,營(yíng)造一種學(xué)生敢想、感說(shuō)、感問(wèn)的課堂氣氛,讓全體學(xué)生都能生動(dòng)活潑、積極主動(dòng)地教學(xué)活動(dòng),在學(xué)習中創(chuàng )新精神和實(shí)踐能力得到培養。

  勾股定理的說(shuō)課稿 篇2

  一、教材分析

 。ㄒ唬┙滩牡匚慌c作用

  勾股定理它揭示的是直角三角形中三邊的數量關(guān)系。它在數學(xué)的發(fā)展中起過(guò)重要的作用,在現時(shí)世界中也有著(zhù)廣泛的作用。學(xué)生通過(guò)對勾股定理的學(xué)習,可以在原有的基礎上對直角三角形有進(jìn)一步的認識和理解。

 。ǘ┙虒W(xué)目標知識與能力:掌握勾股定理,并能運用勾股定理解決一些簡(jiǎn)單實(shí)際問(wèn)題。過(guò)程與方法:經(jīng)歷探索及驗證勾股定理的過(guò)程,了解利用拼圖驗證勾股定理的方法,發(fā)展學(xué)生的合情推理意識、主動(dòng)探究的習慣,感受數形結合和從特殊到一般的思想。情感態(tài)度與價(jià)值觀(guān):激發(fā)愛(ài)國熱情,體驗自己努力得到結論的成就感,體驗數學(xué)充滿(mǎn)探索和創(chuàng )造,體驗數學(xué)的美感,從而了解數學(xué),喜歡數學(xué)。

 。ㄈ┙虒W(xué)重點(diǎn):經(jīng)歷探索及驗證勾股定理的過(guò)程,并能用它來(lái)解決一些簡(jiǎn)單的實(shí)際問(wèn)題。

  教學(xué)難點(diǎn):用面積法(拼圖法)發(fā)現勾股定理。

  突出重點(diǎn)、突破難點(diǎn)的辦法:發(fā)揮學(xué)生的主體作用,通過(guò)學(xué)生動(dòng)手實(shí)驗,讓學(xué)生在實(shí)驗中探索、在探索中領(lǐng)悟、在領(lǐng)悟中理解。

  二、教法與學(xué)法分析:

  學(xué)情分析:七年級學(xué)生已經(jīng)具備一定的觀(guān)察、歸納、猜想和推理的能力。他們在小學(xué)已學(xué)習了一些幾何圖形的面積計算方法(包括割補、拼接),但運用面積法和割補思想來(lái)解決問(wèn)題的意識和能力還不夠。另外,學(xué)生普遍學(xué)習積極性較高,課堂活動(dòng)參與較主動(dòng),但合作交流的能力還有待加強。

  教法分析:結合七年級學(xué)生和本節教材的特點(diǎn),在教學(xué)中采用“問(wèn)題情境----建立模型----解釋?xiě)?--拓展鞏固”的模式,選擇引導探索法。把教學(xué)過(guò)程轉化為學(xué)生親身觀(guān)察,大膽猜想,自主探究,合作交流,歸納總結的過(guò)程。

  學(xué)法分析:在教師的組織引導下,學(xué)生采用自主探究合作交流的研討式學(xué)習方式,使學(xué)生真正成為學(xué)習的主人。

  三、教學(xué)過(guò)程設計

  1、創(chuàng )設情境,提出問(wèn)題

  2、實(shí)驗操作,模型構建

  3、回歸生活,應用新知

  4、知識拓展,鞏固深化

  5、感悟收獲,布置作業(yè)

 。ㄒ唬﹦(chuàng )設情境提出問(wèn)題

  (1)圖片欣賞:勾股定理數形圖xxxx年希臘發(fā)行。美麗的勾股樹(shù)20xx年國際數學(xué)的一枚紀念郵票。

  設計意圖:通過(guò)圖形欣賞,感受數學(xué)美,感受勾股定理的文化價(jià)值。

  (2)某樓房三樓失火,消防隊員趕來(lái)救火,了解到每層樓高3米,消防隊員取來(lái)6.5米長(cháng)的云梯,如果梯子的底部離墻基的距離是2.5米,請問(wèn)消防隊員能否進(jìn)入三樓滅火?

  設計意圖:以實(shí)際問(wèn)題為切入點(diǎn)引入新課,反映了數學(xué)來(lái)源于實(shí)際生活,產(chǎn)生于人的需要,也體現了知識的發(fā)生過(guò)程,解決問(wèn)題的過(guò)程也是一個(gè)“數學(xué)化”的過(guò)程,從而引出下面的環(huán)節。

 。ǘ⿲(shí)驗操作模型構建

  1、等腰直角三角形(數格子)

  2、一般直角三角形(割補)

  問(wèn)題一:對于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積有何關(guān)系?設計意圖:這樣做利于學(xué)生參與探索,利于培養學(xué)生的語(yǔ)言表達能力,體會(huì )數形結合的思想。

  問(wèn)題二:對于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積也有這個(gè)關(guān)系嗎?(割補法是本節的難點(diǎn),組織學(xué)生合作交流)

  設計意圖:不僅有利于突破難點(diǎn),而且為歸納結論打下基礎,讓學(xué)生的分析問(wèn)題解決問(wèn)題的能力在無(wú)形中得到提高。

  通過(guò)以上實(shí)驗歸納總結勾股定理。

  設計意圖:學(xué)生通過(guò)合作交流,歸納出勾股定理的雛形,培養學(xué)生抽象、概括的能力,同時(shí)發(fā)揮了學(xué)生的主體作用,體驗了從特殊——一般的認知規律。

 。ㄈ┗貧w生活應用新知

  讓學(xué)生解決開(kāi)頭情景中的問(wèn)題,前呼后應,增強學(xué)生學(xué)數學(xué)、用數學(xué)的意識,增加學(xué)以致用的樂(lè )趣和信心。

 。ㄋ模┲R拓展鞏固深化

  基礎題,情境題,探索題。

  設計意圖:給出一組題目,分三個(gè)梯度,由淺入深層層練習,照顧學(xué)生的個(gè)體差異,關(guān)注學(xué)生的個(gè)性發(fā)展。知識的運用得到升華。

  基礎題:直角三角形的一直角邊長(cháng)為3,斜邊為5,另一直角邊長(cháng)為X,你可以根據條件提出多少個(gè)數學(xué)問(wèn)題?你能解決所提出的問(wèn)題嗎?

  設計意圖:這道題立足于雙基。通過(guò)學(xué)生自己創(chuàng )設情境,鍛煉了發(fā)散思維。

  情境題:小明媽媽買(mǎi)了一部29英寸(74厘米)的電視機。小明量了電視機的屏幕后,發(fā)現屏幕只有58厘米長(cháng)和46厘米寬,他覺(jué)得一定是售貨員搞錯了。你同意他的想法嗎?

  設計意圖:增加學(xué)生的生活常識,也體現了數學(xué)源于生活,并用于生活。

  探索題:做一個(gè)長(cháng),寬,高分別為50厘米,40厘米,30厘米的木箱,一根長(cháng)為70厘米的木棒能否放入,為什么?試用今天學(xué)過(guò)的知識說(shuō)明。

  設計意圖:探索題的難度相對大了些,但教師利用教學(xué)模型和學(xué)生合作交流的方式,拓展學(xué)生的思維、發(fā)展空間想象能力。

 。ㄎ澹└形蚴斋@布置作業(yè):這節課你的收獲是什么?

  作業(yè):

  1、課本習題2、1

  2、搜集有關(guān)勾股定理證明的資料。

  板書(shū)設計

  探索勾股定理

  如果直角三角形兩直角邊分別為a,b,斜邊為c,那么a2、b2、c2。

  設計說(shuō)明:

  1、探索定理采用面積法,為學(xué)生創(chuàng )設一個(gè)和諧、寬松的情境,讓學(xué)生體會(huì )數形結合及從特殊到一般的思想方法。

  2、讓學(xué)生人人參與,注重對學(xué)生活動(dòng)的評價(jià),一是學(xué)生在活動(dòng)中的投入程度;二是學(xué)生在活動(dòng)中表現出來(lái)的思維水平、表達水平。

  勾股定理的說(shuō)課稿 篇3

  一、教材分析

  本節課是九年制義務(wù)教育課程標準實(shí)驗教科書(shū)(蘇科版)八年級上冊第二章第一節“勾股定理”的第一課時(shí).在本節課以前,學(xué)生已經(jīng)學(xué)習了有關(guān)三角形的一些知識,如三角形的三邊不等關(guān)系,三角形全等的判定等。也學(xué)過(guò)不少利用圖形面積來(lái)探求數式運算規律的例子,如探求乘法公式、單項式乘多項式法則、多項式乘多項式法則等。在學(xué)生這些原有的認知水平基礎上,探求直角三角形的又一重要性質(zhì)——勾股定理。讓學(xué)生的知識形成知識鏈,讓學(xué)生已具有的數學(xué)思維能力得以充分發(fā)揮和發(fā)展。

  在探求勾股定理的過(guò)程中,蘊涵了豐富的數學(xué)思想。把三角形有一個(gè)直角“形”的特點(diǎn)轉化為三邊之間的“數”的關(guān)系,是數形結合的典范;把探求邊的關(guān)系轉化為探求面積的關(guān)系,將邊不在格線(xiàn)上的圖形轉化為可計算的格點(diǎn)圖形,是轉化思想的體現;先探求特殊的直角三角形的三邊關(guān)系,再猜測一般直角三角形的三邊關(guān)系,再解決一些特殊直角三角形的問(wèn)題,這是特殊——一般——特殊的思想。在本節課,要創(chuàng )設問(wèn)題串,提供學(xué)生活動(dòng)的方案,讓學(xué)生在活動(dòng)中思考,在思考中創(chuàng )新,認識和理解勾股定理,并能利用勾股定理解決一些簡(jiǎn)單的有關(guān)直角三角形的計算問(wèn)題.

  二、教學(xué)目標

  1、讓學(xué)生經(jīng)歷從數到形再由形到數的轉化過(guò)程,經(jīng)歷探求三個(gè)正方形面積間的關(guān)系轉化為三邊數量關(guān)系的過(guò)程。并從過(guò)程中讓學(xué)生體會(huì )數形結合思想,發(fā)展將未知轉化為已知,由特殊推測一般的合情推理能力。

  2、讓學(xué)生經(jīng)歷拼圖實(shí)驗、計算面積的過(guò)程,在過(guò)程中養成獨立思考、合作交流的`學(xué)習習慣;讓各類(lèi)型的學(xué)生在這些過(guò)程中發(fā)揮自己特長(cháng),通過(guò)解決問(wèn)題增強自信心,激發(fā)學(xué)習數學(xué)的興趣;通過(guò)老師的介紹,感受勾股定理的文化價(jià)值.

  3、能說(shuō)出勾股定理,并能用勾股定理解決簡(jiǎn)單問(wèn)題.

  三、教學(xué)重點(diǎn)

  勾股定理的探索過(guò)程.

  四、教學(xué)難點(diǎn)

  將邊不在格線(xiàn)上的圖形轉化為邊在格線(xiàn)上的圖形,以便于計算圖形面積.

  五、教學(xué)方法與教學(xué)手段

  采用探究發(fā)現式教學(xué),提供適當的問(wèn)題情境.給學(xué)生自主探究交流的空間,引導學(xué)生有目的地探索.

  六、教學(xué)過(guò)程

 。ㄒ唬﹦(chuàng )設情境 提出問(wèn)題

  1.同學(xué)們,我們已經(jīng)學(xué)過(guò)三角形的一些基本知識,如果一個(gè)三角形的兩條邊分別長(cháng)6和8,你知道第三邊的長(cháng)嗎?你知道第三邊長(cháng)的范圍嗎?

  2.如果又已知這兩邊的夾角,那么第三邊的長(cháng)是多少?

  3.已知直角三角形的兩邊的長(cháng),如何求第三邊的長(cháng)呢?這節課就讓我們一起來(lái)探討這個(gè)問(wèn)題.板書(shū):直角三角形三邊數量關(guān)系.

 。ㄟ@是對三角形三邊的不等關(guān)系和三角形全等的判定的回顧,從學(xué)生從原有的認知水平出發(fā),揭示這節課產(chǎn)生的根源,符合學(xué)生的認知心理,也自然地引出本節課的目標。讓學(xué)生體會(huì )到當一般性的問(wèn)題不好解決時(shí),可以先將一般問(wèn)題轉化為特殊問(wèn)題來(lái)研究.)

 。ǘ⿲(shí)踐探索 猜想歸納

  1、用什么方法來(lái)探求板書(shū):直角三角形三邊數量關(guān)系呢?

  回憶我們曾經(jīng)利用圖形面積探索過(guò)數學(xué)公式,大家還記得在哪用過(guò)嗎?

 。▽W(xué)生討論)

  課件展示:平方差公式、完全平方公式、單項式乘多項式、多項式乘多項式.

  今天,讓我們試一試通過(guò)計算圖形的面積能不能得到直角三角形三邊數量關(guān)系.

 。◤膶W(xué)生已有的學(xué)習經(jīng)驗出發(fā),將探求邊長(cháng)之間的關(guān)系轉化為探求面積之間的關(guān)系,讓學(xué)生覺(jué)得解決今天問(wèn)題的方法并不陌生,增強探索問(wèn)題的信心.)

  2、(課件展示圖2)觀(guān)察圖形,我們分別以直角三角形ABC的三邊為邊向形外作三個(gè)正方形.若將圖形①、②、③、④、⑤剪下,用它們可以拼一個(gè)與正方形ABDE大小一樣的正方形嗎?

 。ㄍ焕媒處熖峁┑膶W(xué)案,合作拼圖。)

  通過(guò)拼圖,你有什么發(fā)現?

 。ㄈ鐖D3,以BC為邊的正方形面積與以AC為邊的正方形面積的和等于以AB為邊的正方形面積.拼圖活動(dòng),引發(fā)了學(xué)生的猜想,增加了研究的趣味性,鍛煉了學(xué)生的空間思維能力和動(dòng)手能力.體現了活動(dòng)——數學(xué)的思想.)

  3、拼圖活動(dòng)引發(fā)我們的靈感;運算推演

  證實(shí)我們的猜想.為了計算面積方便,我們可

  將這幅圖形放在方格紙中.如果每一個(gè)小方格的邊長(cháng)記作“1”,請你求出圖中三個(gè)正方形的面積(圖4).

 。▽W(xué)生容易回答SP=9,SQ=16。)

  你是如何得到的?

 。ǹ梢詳祱D形中的小方格的個(gè)數,也可以通

  過(guò)正方形面積公式計算得到。)

  如何計算 ?

 。ǖ那蠓ㄊ沁@節課的難點(diǎn),這時(shí)可讓學(xué)生先在學(xué)案上獨立分析,再通過(guò)小組交流,最后由小組代表到臺前展示.學(xué)生可能提出割(圖5)、補(圖6)、平移(圖7)、旋轉(圖8)等方法,旋轉這種方法只適用于斜邊為整數的情況,沒(méi)有一般性,若有學(xué)生提出,應提醒學(xué)生.)

  4、肯定學(xué)生的研究成果,進(jìn)而讓學(xué)生打開(kāi)書(shū)回顧課本上的提示.從小明、小麗的方法中你能得到什么啟發(fā)?

 。ò褕D形進(jìn)行“割”和“補”,即把不能利用網(wǎng)格線(xiàn)直接計算面積的圖形轉化成可以利用網(wǎng)格線(xiàn)直接計算面積的圖形,讓學(xué)生體會(huì )將較難的問(wèn)題轉化為簡(jiǎn)單問(wèn)題的思想)

  5、再給出直角邊為5和3的直角三角形(圖9),讓學(xué)生計算分別以三邊作為邊所作的正方形面積.

 。ㄟ@是轉化思想,也是“割補”方法的再一次應用.在前面的探求過(guò)程中有的學(xué)生沒(méi)能自己做出來(lái),提供再一次的機會(huì ),可讓全體學(xué)生再次感受轉化思想,體驗成功的樂(lè )趣.)

  通過(guò)計算,你發(fā)現這三個(gè)正方形面積間有什么關(guān)系嗎?

  (SP+SQ=SR,要給學(xué)生留有思考時(shí)間.)

  6、通過(guò)以上的實(shí)驗、操作、計算,我們發(fā)現以直角三角形的各邊為邊所作的正方形的面積之間有什么關(guān)系呢?同學(xué)們還有什么疑問(wèn)嗎?

 。ㄒ灾苯沁厼檫吽鞯恼叫蔚拿娣e和等于以斜邊為邊所作的正方形的面積。如果學(xué)生提出我們討論的都是邊長(cháng)為整數的直角三角形情況,那么邊長(cháng)是小數時(shí),結論是否成立?教師就演示以下實(shí)驗。)

  利用方格紙,我們方便計算直角邊為整數的情況,若直角邊為小數時(shí),所得到的正方形面積之間也有如上關(guān)系嗎?

  將網(wǎng)格線(xiàn)去掉,利用《幾何畫(huà)板》的度量工具可以看到SP+SQ=SR.

 。ɡ脦缀萎(huà)板的高效性、動(dòng)態(tài)性反映這一過(guò)程,讓學(xué)生體會(huì )到更多的特殊情形,從而為歸納提供基礎,這樣歸納的結論更具有一般性,學(xué)生的印象也更深刻.)

  7、我們這節課是探索直角三角形三邊數量關(guān)系.至此,你對直角三角形三邊的數量關(guān)系有什么發(fā)現?

 。娣e是邊長(cháng)的平方,面積間的等量關(guān)系轉化為邊長(cháng)間的等量關(guān)系,即直角三角形三邊的等量關(guān)系:兩直角邊的平方和等于下邊的平方.)

 。ㄟ@一問(wèn)題的結論是本節課的點(diǎn)睛之筆,應充分讓學(xué)生總結,交流,表達.)

  8、用彎曲的手臂形象地表示勾、股、弦的概念,板書(shū)勾股定理,進(jìn)而給出字母表達式.一段緊張的探索過(guò)程之后,播放一段有關(guān)勾股歷史的錄音.

 。ㄟ@樣既活躍了課堂氣氛,又展現了勾股歷史,激發(fā)學(xué)生熱愛(ài)祖國悠久歷史文化,激勵學(xué)生發(fā)奮學(xué)習的情感.)

  9、閱讀課本,提出問(wèn)題

 。ㄗ寣W(xué)生有將知識內化為自己的知識結構的過(guò)程,教師巡視,對有困難的同學(xué)給予幫助,促進(jìn)全班同學(xué)共同進(jìn)步,體現面向全體的教學(xué)原則.)

 。ㄈ┱n堂練習 鞏固新知

  1.完成課本第45頁(yè)練習第1題、第2題.

 。1)求下列直角三角形中未知邊的長(cháng):

 。2)求下列圖中未知數x、y、z的值:

 。ǔ浞掷谜n本,在前面閱讀的基礎上做課本上的練習題。提問(wèn)學(xué)生口答,老師再規范板書(shū)一題.通過(guò)對勾股定理的基本應用,讓學(xué)生知道已知直角三角形三邊中的任意兩邊,可以求第三邊.)

  2、 如圖:一塊長(cháng)約80 m、寬約60 m的長(cháng)方形草坪,被幾個(gè)不自覺(jué)的學(xué)生沿對角線(xiàn)踏出了一條斜“路”,這種情況在生活中時(shí)有發(fā)生。請問(wèn)同學(xué)們:

 。1)這幾位同學(xué)為什么不走正路,走斜“路”?

 。2)他們知道走斜“路”比正路少走幾步嗎?

 。3)他們這樣這樣做,值得嗎?

 。ㄟ@是一道貼近學(xué)生生活的實(shí)例,在勾股定理的運用中滲透了德育教育)

 。ㄋ模┱n堂小結 布置作業(yè)

  1、通過(guò)本節課的學(xué)習,大家有什么收獲?有什么疑問(wèn)?你認為還有什么要繼續探索的問(wèn)題?

 。▽W(xué)生總結本堂課的收獲,可以是知識、應用、數學(xué)思想方法以及獲取新知的途徑等.給學(xué)生自由的空間,鼓勵學(xué)生多說(shuō).這樣引導學(xué)生從多角度對本節課歸納總結,感悟點(diǎn)滴,使學(xué)生將知識系統化,提高學(xué)生的綜合表達能力.如果學(xué)生沒(méi)有提出繼續要探討的問(wèn)題,教師可以引導學(xué)生思考:直角三角形的三邊有特殊的等量關(guān)系,一般三角形三邊是否也存在一種等量關(guān)系呢?再展示上課開(kāi)始的問(wèn)題:如果一個(gè)三角形的兩條邊分別長(cháng)6和8,這兩邊的夾角確定了,你知道第三邊的長(cháng)是多少?這是我們今后將要探討的內容,首尾呼應,激發(fā)學(xué)生不滿(mǎn)足于現狀,有不斷提出新問(wèn)題的欲望,即培養學(xué)生的創(chuàng )新意識.)

  2、作業(yè)

 。1)課本第471頁(yè)第2題,并完成第45頁(yè)的實(shí)驗。

 。2)在以下網(wǎng)頁(yè)中你可以找到有關(guān)勾股定理的豐富的內容,請你結合本節課的學(xué)習和從網(wǎng)上或書(shū)本上自學(xué)到的知識寫(xiě)一篇有關(guān)勾股定理的小論文,題目自定,一周后交給課代表并展示交流.

 。ㄗ鳂I(yè)的多元化、多層次,有利于全體學(xué)生的全面素質(zhì)發(fā)展。)

  七、教學(xué)設計說(shuō)明:

  本節課根據學(xué)生的認知結構采用“觀(guān)察——猜想——歸納——驗證——應用”的教學(xué)方法,這一流程體現了知識發(fā)生、形成和發(fā)展的過(guò)程,讓學(xué)生體會(huì )到觀(guān)察、猜想、歸納、驗證的思想和數形結合的思想。

  本節課從學(xué)生的原有認知出發(fā)提出問(wèn)題,揭示這節課產(chǎn)生的根源,符合學(xué)生的認知心理。教科書(shū)設計了在方格紙上通過(guò)計算面積的方法探究勾股定理的活動(dòng),在此基礎上,為了更好地展示這一探索過(guò)程,本節課先讓學(xué)生回顧利用圖形面積探求數學(xué)公式的經(jīng)歷,以此確定研究方法。繼而設計了剪紙活動(dòng),從中引發(fā)學(xué)生的猜想,再利用幾何畫(huà)板這一工具帶領(lǐng)學(xué)生從直角邊分別為3和4的直角三角形到更多的任意直角三角形的研究,讓學(xué)生充分經(jīng)歷這一觀(guān)察、猜想、歸納的過(guò)程。其中SR的求法是探求過(guò)程中的難點(diǎn),應讓學(xué)生充分地思考、討論、總結方法。通過(guò)對特殊到一般的考查,讓學(xué)生主動(dòng)建立由數到形,由形到數的聯(lián)想,從中使學(xué)生不斷積累數學(xué)活動(dòng)的經(jīng)驗,歸納出直角三角形三邊數量之間的關(guān)系。在教學(xué)中鼓勵學(xué)生采用觀(guān)察分析,自主探索,合作交流的學(xué)習方法,培養學(xué)生主動(dòng)的動(dòng)手,動(dòng)腦,動(dòng)口的學(xué)習習慣和能力,使學(xué)生真正成為學(xué)習的主人。

  除了探究出勾股定理的內容以外,本節課還適時(shí)地向學(xué)生展現勾股定理的歷史,特別是通過(guò)介紹我國古代在勾股定理研究和運用方面的成就,激發(fā)學(xué)生愛(ài)國熱情,培養學(xué)生的民族自豪感和探索創(chuàng )新的精神。

  練習反饋中既有勾股定理的基本應用,還有貼近學(xué)生生活的實(shí)例,既讓學(xué)生感受到學(xué)習知識應用于生活的成就感,又使學(xué)生深刻了解勾股定理的廣泛應用。題目的設計中滲透了德育教育,拓展了學(xué)生的空間思維,使得一節幾何課全面地考查了學(xué)生的各方面思維。

  讓學(xué)生總結本堂課的收獲,從內容,到數學(xué)思想方法,到獲取知識的途徑等方面。給學(xué)生自由的空間,鼓勵學(xué)生多說(shuō)。這樣引導學(xué)生從多角度對本節課歸納總結,感悟點(diǎn)滴,使學(xué)生將知識系統化,提高學(xué)生素質(zhì),鍛煉學(xué)生的綜合及表達能力。

  作業(yè)為了達到提高鞏固的目的,提供給學(xué)生網(wǎng)址是為了拓展學(xué)生的視野,以期學(xué)生能主動(dòng)地探求對勾股定理更深入的認識。

  勾股定理的說(shuō)課稿 篇4

  一、教材分析:

 。ㄒ唬┙滩牡牡匚慌c作用

  從知識結構上看,勾股定理揭示了直角三角形三條邊之間的數量關(guān)系,為后續學(xué)習解直角三角形提供重要的理論依據,在現實(shí)生活中有著(zhù)廣泛的應用。

  從學(xué)生認知結構上看,它把形的特征轉化成數量關(guān)系,架起了幾何與代數之間的橋梁;勾股定理又是對學(xué)生進(jìn)行愛(ài)國主義教育的良好素材,因此具有相當重要的地位和作用。

  根據數學(xué)新課程標準以及八年級學(xué)生的認知水平我確定如下學(xué)習目標:知識技能、數學(xué)思考、問(wèn)題解決、情感態(tài)度。其中情感態(tài)度方面,以我國數學(xué)文化為主線(xiàn),激發(fā)學(xué)生熱愛(ài)祖國悠久文化的情感。

 。ǘ┲攸c(diǎn)與難點(diǎn)

  為變被動(dòng)接受為主動(dòng)探究,我確定本節課的重點(diǎn)為:勾股定理的探索過(guò)程。限于八年級學(xué)生的思維水平,我將面積法(拼圖法)發(fā)現勾股定理確定為本節課的難點(diǎn),我將引導學(xué)生動(dòng)手實(shí)驗突出重點(diǎn),合作交流突破難點(diǎn)。

  二、教學(xué)與學(xué)法分析

  教學(xué)方法葉圣陶說(shuō)過(guò)"教師之為教,不在全盤(pán)授予,而在相機誘導。"因此教師利用幾何直觀(guān)提出問(wèn)題,引導學(xué)生由淺入深的探索,設計實(shí)驗讓學(xué)生進(jìn)行驗證,感悟其中所蘊涵的思想方法。

  學(xué)法指導為把學(xué)習的主動(dòng)權還給學(xué)生,教師鼓勵學(xué)生采用動(dòng)手實(shí)踐,自主探索、合作交流的學(xué)習方法,讓學(xué)生親自感知體驗知識的形成過(guò)程。

  三、教學(xué)過(guò)程

  我國數學(xué)文化源遠流長(cháng)、博大精深,為了使學(xué)生感受其傳承的魅力,我將本節課設計為以下五個(gè)環(huán)節。

  首先,情境導入古韻今風(fēng)

  給出《七巧八分圖》中的一組圖片,讓學(xué)生利用兩組七巧板進(jìn)行合作拼圖。讓學(xué)生觀(guān)察并思考三個(gè)正方形面積之間的關(guān)系?它們圍成了怎么樣三角形,反映在三邊上,又蘊含著(zhù)怎么樣數學(xué)奧秘呢?寓教于樂(lè ),激發(fā)學(xué)生好奇、探究的欲望。

  第二步追溯歷史解密真相

  勾股定理的探索過(guò)程是本節課的重點(diǎn),依照數學(xué)知識的循序漸進(jìn)、螺旋上升的原則,我設計如下三個(gè)活動(dòng)。

  從上面低起點(diǎn)的問(wèn)題入手,有利于學(xué)生參與探索。學(xué)生很容易發(fā)現,在等腰三角形中存在如下關(guān)系。巧妙的將面積之間的關(guān)系轉化為邊長(cháng)之間的關(guān)系,體現了轉化的思想。觀(guān)察發(fā)現雖然直觀(guān),但面積計算更具說(shuō)服力。將圖形轉化為邊在格線(xiàn)上的圖形,以便于計算圖形面積,體現了數形結合的思想。學(xué)生會(huì )想到用"數格子"的方法,這種方法雖然簡(jiǎn)單易行,但對于下一步探索一般直角三角形并不適用,具有局限性。因此教師應引導學(xué)生利用"割"和"補"的方法求正方形C的面積,為下一步探索復雜圖形的面積做鋪墊。

  突破等腰直角三角形的束縛,探索在一般情況下的直角三角形是否也存在這一結論呢?體現了"從特殊到一般"的認知規律。教師給出邊長(cháng)單位長(cháng)度分別為3、4、5的直角三角形,避免了學(xué)生因作圖不準確而產(chǎn)生的錯誤,也為下面"勾三股四弦五"的提出埋下伏筆。有了上一環(huán)節的鋪墊,有效地分散了難點(diǎn)。在求正方形C的面積時(shí),學(xué)生將展示"割"的方法,"補"的方法,有的學(xué)生可能會(huì )發(fā)現平移的方法,旋轉的方法,對于這兩種新方法教師應給于表?yè)P,肯定學(xué)生的研究成果,培養學(xué)生的類(lèi)比、遷移以及探索問(wèn)題的能力。

  使用幾何畫(huà)板動(dòng)態(tài)演示,使幾何與代數之間的關(guān)系可視化。當為直角三角形時(shí),改變三邊長(cháng)度三邊關(guān)系不變,當∠α為銳角或鈍角時(shí),三邊關(guān)系就改變了,進(jìn)而強調了命題成立的前提條件必須是直角三角形。加深學(xué)生對勾股定理理解的同時(shí)也拓展了學(xué)生的視野。

  以上三個(gè)環(huán)節層層深入步步引導,學(xué)生歸納得到命題1,從而培養學(xué)生的合情推理能力以及語(yǔ)言表達能力。

  感性認識未必是正確的,推理驗證證實(shí)我們的猜想。

  第三步推陳出新借古鼎新

  教材中直接給出"趙爽弦圖"的證法對學(xué)生的思維是一種禁錮,教師創(chuàng )新使用教材,利用拼圖活動(dòng)解放學(xué)生的大腦,讓學(xué)生發(fā)揮自己的聰明才智證明勾股定理。這是教學(xué)的難點(diǎn)也是重點(diǎn),教師應給學(xué)生充分的自主探索的時(shí)間與空間,讓學(xué)生的思維在相互討論中碰撞、在相互學(xué)習中完善。教師深入到學(xué)生中間,觀(guān)察學(xué)生探究方法接受學(xué)生的質(zhì)疑,對于不同的拼圖方案給予肯定。從而體現出"學(xué)生是學(xué)習的主體,教師是組織者、引導者與合作者"這一教學(xué)理念。學(xué)生會(huì )發(fā)現兩種證明方案。

  方案1為趙爽弦圖,學(xué)生講解論證過(guò)程,再現古代數學(xué)家的探索方法。方案2為學(xué)生自己探索的結果,論證之巧較方案1有異曲同工之妙。整個(gè)探索過(guò)程,讓學(xué)生經(jīng)歷由表面到本質(zhì),由合情推理到演繹推理的發(fā)掘過(guò)程,體會(huì )數學(xué)的嚴謹性。對比"古"、"今"兩種證法,讓學(xué)生體會(huì )"吹盡黃沙始到金"的喜悅,感受到"青出于藍而勝于藍"的自豪感。板書(shū)勾股定理,進(jìn)而給出字母表示,培養學(xué)生的符號意識。

  教師對"勾、股、弦"的含義以及古今中外對勾股定理的研究做一個(gè)介紹,使學(xué)生感受數學(xué)文化,培養民族自豪感和愛(ài)國主義精神。利用勾股樹(shù)動(dòng)態(tài)演示,讓學(xué)生欣賞數學(xué)的精巧、優(yōu)美。

  第四步取其精華古為今用

  我按照"理解—掌握—運用"的梯度設計了如下三組習題。

 。1)對應難點(diǎn),鞏固所學(xué)。

 。2)考查重點(diǎn),深化新知。

 。3)解決問(wèn)題,感受應用。

  第五步溫故反思任務(wù)后延

  在課堂接近尾聲時(shí),我鼓勵學(xué)生從"四基"的要求對本節課進(jìn)行小結。進(jìn)而總結出一個(gè)定理、二個(gè)方案、三種思想、四種經(jīng)驗。然后布置作業(yè),分層作業(yè)體現了教育面向全體學(xué)生的理念。

  勾股定理的說(shuō)課稿 篇5

  一、教材分析

  教材所處的地位與作用

  “探索勾股定理”是人教版八年級《數學(xué)》下冊?xún)热!肮垂啥ɡ怼笔前才旁趯W(xué)生學(xué)習了三角形、全等三角形、等腰三角形等有關(guān)知識之后,它揭示了直角三角形三邊之間的一種美妙關(guān)系,將數與形密切聯(lián)系起來(lái),在幾何學(xué)中占有非常重要的位置。同時(shí)勾股定理在生產(chǎn)、生活中也有很大的用途。

  二、教學(xué)目標

  綜上分析及教學(xué)大綱要求,本課時(shí)教學(xué)目標制定如下:

  1、知識目標

  知道勾股定理的由來(lái),初步理解割補拼接的面積證法。

  掌握勾股定理,通過(guò)動(dòng)手操作利用等積法理解勾股定理的證明過(guò)程。

  2、能力目標

  在探索勾股定理的過(guò)程中,讓學(xué)生經(jīng)歷“觀(guān)察——合理猜想——歸納——驗證”的數學(xué)思想,并體會(huì )數形結合以及由特殊到一般的思想方法,培養學(xué)生的觀(guān)察力、抽象概括能力、創(chuàng )造想象能力以及科學(xué)探究問(wèn)題的能力。

  3、情感目標

  通過(guò)觀(guān)察、猜想、拼圖、證明等操作,使學(xué)生深刻感受到數學(xué)知識的發(fā)生、發(fā)展過(guò)程。

  介紹“趙爽弦圖”,讓學(xué)生感受到中國古代在勾股定理研究方面所取得的偉大成就,激發(fā)學(xué)生的數學(xué)激情及愛(ài)國情感。

  三、教學(xué)重難點(diǎn)

  本課重點(diǎn)是掌握勾股定理,讓學(xué)生深刻感悟到直角三角形三邊所具備的特殊關(guān)系。由于八年級學(xué)生構造能力較低以及對面積證法的不熟悉,因此本課的難點(diǎn)便是勾股定理的證明。

  四、教學(xué)問(wèn)題診斷

  本 節主要攻克的問(wèn)題就是本節的難點(diǎn):勾股定理的證明。我打算采用面積法來(lái)講解,但這種借助于圖形的面積來(lái)探索、驗證數學(xué)結論的數形結合思想,對于學(xué)生來(lái)說(shuō), 有些陌生,難以理解,又加之數學(xué)課本身的課程特征,在講解時(shí),沒(méi)有文科那么深動(dòng)形象,所以針對這一現狀,我在教法和學(xué)法上都進(jìn)行了改進(jìn)。

  五、教法與學(xué)法分析

  [教學(xué)方法與手段] 針對八年級學(xué)生的知識結構和心理特征,本節課選擇引導探索法,由淺入深,由特殊到一般地提出問(wèn)題,引導學(xué)生自主探索,合作交流,并利用多媒體進(jìn)行教學(xué)。

  [學(xué)法分析] 在教師組織引導下,采用自主探索、合作交流的方式,讓學(xué)生自己實(shí)驗,自己獲取知識,并感悟學(xué)習方法,借此培養學(xué)生動(dòng)手、動(dòng)口、動(dòng)腦能力,使學(xué)生真正成為學(xué)習的主體。讓學(xué)生感受到自己是學(xué)習的主體,增強他們的主動(dòng)感和責任感,這樣對掌握新知會(huì )事半功倍。

  六、教學(xué)流程設計

  1、創(chuàng )設情境,引入新課

  本節課開(kāi)始利用多媒體介紹了在北京召開(kāi)的2002年 國際數學(xué)家大會(huì )的會(huì )標,其圖案為“趙爽弦圖”,由此導入新課,是為了激發(fā)學(xué)生的興趣和民族自豪感,它是課堂教學(xué)的重要一環(huán)!昂玫拈_(kāi)始是成功的一半”,在 課的起始階段迅速集中學(xué)生注意力,把他們的思緒帶進(jìn)特定的學(xué)習情境中,激發(fā)學(xué)生濃厚的學(xué)習興趣和強烈的求知欲。多媒體展示這一有意義的圖案,可有效開(kāi)啟學(xué) 生思維的閘門(mén),激勵探究,使學(xué)生的學(xué)習狀態(tài)由被動(dòng)變?yōu)橹鲃?dòng),在輕松愉悅的氛圍中學(xué)到知識。

  2、觀(guān)察發(fā)現,類(lèi)比猜想

  讓學(xué)生仔細觀(guān)察畢達哥拉斯朋友家的瓷磚(圖1), 從而得到特殊的等腰直角三角形三邊關(guān)系,緊接著(zhù)由特殊到一般,讓學(xué)生合理猜測:是否任意直角三角形都符合這個(gè)“三邊關(guān)系”的結論?同學(xué)們很輕易的得到了結 論。最后對此結論通過(guò)在網(wǎng)格中數格子進(jìn)行驗證,讓學(xué)生經(jīng)歷了“觀(guān)察——合理猜測——歸納——驗證”的這一數學(xué)思想。在數格子的驗證過(guò)程中,發(fā)現任意直角三 角形(圖2)斜邊上長(cháng)出的正方形中網(wǎng)格不規則,沒(méi)法數出。通過(guò)同學(xué)們的討論,發(fā)現數不出來(lái)的原因是格子不規則,從而想到了用補或割的方法進(jìn)行計算,其原則就是由不規則經(jīng)過(guò)割補變?yōu)橐巹t。

  3、實(shí)驗探究,證明結論

  因為勾股定理的出現,使數學(xué)從單一的純計算進(jìn)入了幾何圖形的證明,所以為了讓學(xué)生感受數形結合這一數學(xué)思想,讓學(xué)生親自動(dòng)手,互相協(xié)作,拿一塊由a2和b2組成的不規則的平面圖形經(jīng)割補,變?yōu)橐巹t的c2,又因兩塊割補前后面積相等,從而得到勾股定理:a2+b2= c2,也因此引入了“等積法”證明勾股定理。

  4、練兵之際

  這是“總統證法”,此時(shí)讓學(xué)生自己探索,然后討論。選用“總統證法”,第一是為了讓同學(xué)們熟悉“等積法”,第二讓學(xué)生感受數學(xué)的地位之高,第三在沒(méi)有講解的情況下,學(xué)生自己得出了“總統證法”,大大增強了學(xué)生的自信心和自豪感。

  5、自己動(dòng)手,拼出弦圖

  讓同學(xué)們拿出了提前準備好的四個(gè)全等的邊長(cháng)為a、b、c的 直角三角形進(jìn)行拼圖,小組活動(dòng),拼出自己喜愛(ài)的圖形,但有一個(gè)前提是所拼出的圖形必須能夠用等積法證明勾股定理。此時(shí)已經(jīng)是把課堂全部還給了學(xué)生,讓他們 在數學(xué)的海洋中馳騁,提供這種學(xué)習方式就是為了讓孩子們更加開(kāi)闊,更加自主,更方便于他們到廣闊的海洋中去尋找寶藏,學(xué)生們拼得很好,并且都給出了正確的 證明,在黑板上盡情地展示了一番。

  6、總結反思

  通 過(guò)這一堂課,我認為數學(xué)教學(xué)的核心不是知識本身,而是數學(xué)的思維方式,而培養這種數學(xué)思維方式需要豐富的數學(xué)活動(dòng)。在活動(dòng)中學(xué)生可以用自己創(chuàng )造與體驗的方 法來(lái)學(xué)習數學(xué),這樣才能真正的掌握數學(xué),真正擁有數學(xué)的思維方式,這一課的學(xué)習就是通過(guò)讓學(xué)生自主探索知識,從而將其轉化為自己的,真正做到了先激發(fā)興 趣,再合作交流,最后展示成果的自主學(xué)習,教學(xué)模式也從教師講授為主轉為了學(xué)生動(dòng)腦、動(dòng)手、自主研究,小組學(xué)習討論交流為主,把數學(xué)課堂轉化為“數學(xué)實(shí)驗 室”,學(xué)生通過(guò)自己活動(dòng)得出結論,使創(chuàng )新精神與實(shí)踐能力得到了發(fā)展。

  七、設計說(shuō)明

  1、根據學(xué)生的知識結構,我采用的數學(xué)流程是:創(chuàng )設情境引入新課——觀(guān)察發(fā)現類(lèi)比猜想——實(shí)驗探究證明結論——自己動(dòng)手拼出弦圖——總結反思這五部分。這一流程體現了知識的發(fā)生、形成和發(fā)展的過(guò)程,讓學(xué)生經(jīng)歷了觀(guān)察——猜想——歸納——驗證的思想和數形結合的思想。

  2、探索定理采用了面積法,引導學(xué)生利用實(shí)驗由特殊到一般的數學(xué)思想對直角三角形三邊關(guān)系進(jìn)行了研究,并得出了結論。這種方法是認識事物規律的重要方法之一,通過(guò)教學(xué)讓學(xué)生初步掌握這種方法,對于學(xué)生良好的思維品質(zhì)的形成有重要作用,對學(xué)生終身發(fā)展也有很大作用。

  勾股定理的說(shuō)課稿 篇6

各位領(lǐng)導:

  上午好!今天我說(shuō)課的課題是《勾股定理》。

  一、教材分析:

  (一)本節內容在全書(shū)和章節的地位。

  這節課是九年制義務(wù)教育課程標準實(shí)驗教科書(shū)(華東版),八年級第十九章第二節“勾股定理”第一課時(shí)。勾股定理是學(xué)生在已經(jīng)掌握了直角三角形有關(guān)性質(zhì)的基礎上進(jìn)行學(xué)習的,它是直角三角形的一條非常重要的性質(zhì),是幾何中最重要的定理之一,它揭示了一個(gè)三角形三條邊之間的數量關(guān)系,它可以解決直角三角形的主要依據之一,在實(shí)際生活中用途很大。教材在編寫(xiě)時(shí)注意培養學(xué)生的動(dòng)手操作能力和觀(guān)察分析問(wèn)題的能力;通過(guò)實(shí)際分析,拼圖等活動(dòng),使學(xué)生獲得較為直觀(guān)的印象;通過(guò)聯(lián)系比較,理解勾股定理,以便于正確的進(jìn)行運用。

  (二)三維教學(xué)目標:

  1、知識與能力目標。

 。1)理解并掌握勾股定理的內容和證明,能夠靈活運用勾股定理及其計算;

 。2)通過(guò)觀(guān)察分析,大膽猜想,并探索勾股定理,培養學(xué)生動(dòng)手操作、合作交流、邏輯推理的能力。

  2、過(guò)程與方法目標。

  在探索勾股定理的過(guò)程中,讓學(xué)生經(jīng)歷“觀(guān)察-猜想-歸納-驗證”的數學(xué)思想,并體會(huì )數形結合和從特殊到一般的思想方法。

  3、情感態(tài)度與價(jià)值觀(guān)。

  通過(guò)介紹中國古代勾股方面的成就,激發(fā)學(xué)生熱愛(ài)祖國和熱愛(ài)祖國悠久文化的思想感情,培養學(xué)生的民族自豪感和鉆研精神。

  (三)教學(xué)重點(diǎn)、難點(diǎn):

  1、教學(xué)重點(diǎn):勾股定理的證明與運用

  2、教學(xué)難點(diǎn):用面積法等方法證明勾股定理

  3、難點(diǎn)成因:

  對于勾股定理的得出,首先需要學(xué)生通過(guò)動(dòng)手操作,在觀(guān)察的基礎上,大膽猜想數學(xué)結論,而這需要學(xué)生具備一定的分析、歸納的思維方法和運用數學(xué)的思想意識,但學(xué)生在這一方面的可預見(jiàn)性和耐挫折能力并不是很成熟,從而形成困難。

  4、突破措施:

 。1)創(chuàng )設情景,激發(fā)思維:

  創(chuàng )設生動(dòng)、啟發(fā)性的問(wèn)題情景,激發(fā)學(xué)生的問(wèn)題沖突,讓學(xué)生在感到“有趣”、“有意思”的狀態(tài)下進(jìn)入學(xué)習過(guò)程;

 。2)自主探索,敢于猜想:

  充分讓自己動(dòng)手操作,大膽猜想數學(xué)問(wèn)題的結論,老師是整個(gè)活動(dòng)的組織者,更是一位參入者,學(xué)生之間相互交流、協(xié)作,從而形成生動(dòng)的課堂環(huán)境;

 。3)張揚個(gè)性,展示風(fēng)采:

  實(shí)行“小組合作制”,各小組中自己推薦一人擔任“發(fā)言人”,一人擔任“書(shū)記員”,在討論結束后,由小組的“發(fā)言人”匯報本小組的討論結果,并可上臺利用“多媒體視頻展示臺”展示本組的優(yōu)秀作品,其他小組給予評價(jià)。這樣既保證討論的有效性,也調動(dòng)了學(xué)生的學(xué)習積極性。

  二、教法與學(xué)法分析:

  1、教法分析:

  數學(xué)是一門(mén)培養人的思維,發(fā)展人的思維的重要學(xué)科,因此在教學(xué)中,不僅要使學(xué)生“知其然”,而且還要使學(xué)生“知其所以然”。針對初二年級學(xué)生的認知結構和心理特征,本節課可選擇“引導探索法”,由淺到深,由特殊到一般的提出問(wèn)題。引導學(xué)生自主探索,合作交流,這種教學(xué)理念緊隨新課改理念,也反映了時(shí)代精神;镜慕虒W(xué)程序是“創(chuàng )設情景-動(dòng)手操作-歸納驗證-問(wèn)題解決-課堂小結-布置作業(yè)”六個(gè)方面。

  2、學(xué)法分析:

  新課標明確提出要培養“可持續發(fā)展的學(xué)生”,因此教師要有組織、有目的、有針對性的引導學(xué)生并參入到學(xué)習活動(dòng)中,鼓勵學(xué)生采用自主探索,合作交流的研討式學(xué)習方式,培養學(xué)生“動(dòng)手”、“動(dòng)腦”、“動(dòng)口”的習慣與能力,使學(xué)生真正成為學(xué)習的主人。

  三、教學(xué)過(guò)程設計:

  (一)創(chuàng )設情景:

  多媒體課件演示FLASH小動(dòng)畫(huà)片:某樓房三樓失火,消防隊員趕來(lái)救火,了解到每層樓高3米,消防隊員取來(lái)6.5米長(cháng)的云梯,如果梯子的底部離墻基的距離是2.5米,請問(wèn)消防隊員能否進(jìn)入三樓滅火?

  問(wèn)題的設計有一定的挑戰性,目的是激發(fā)學(xué)生的探究欲望,老師要注意引導學(xué)生將實(shí)際問(wèn)題轉化為數學(xué)問(wèn)題,也就是“已知一直角三角形的兩邊,求第三邊?”的問(wèn)題。學(xué)生會(huì )感到一些困難,從而老師指出學(xué)習了今天的這節課后,同學(xué)們就會(huì )有辦法解決了。這種以實(shí)際問(wèn)題作為切入點(diǎn)導入新課,不僅自然,而且也反映了“數學(xué)來(lái)源于生活”,學(xué)習數學(xué)是為更好“服務(wù)于生活”。

  (二)動(dòng)手操作:

  1、課件出示課本P99圖19.2.1:

  觀(guān)察圖中用陰影畫(huà)出的三個(gè)正方形,你從中能夠得出什么結論?

  學(xué)生可能考慮到各種不同的思考方法,老師要給予肯定,并鼓勵學(xué)生用語(yǔ)言進(jìn)行描述,引導學(xué)生發(fā)現SP+SQ=SR(此時(shí)讓小組“發(fā)言人”發(fā)言),從而讓學(xué)生通過(guò)正方形的面積之間的關(guān)系發(fā)現:對于等腰直角三角形,其兩直角邊的平方和等于斜邊的平方,即當∠C=90°,AC=BC時(shí),則 AC2+BC2=AB2。這樣做有利于學(xué)生參與探索,感受數學(xué)學(xué)習的過(guò)程,也有利于培養學(xué)生的語(yǔ)言表達能力,體會(huì )數形結合的思想。

  2、緊接著(zhù)讓學(xué)生思考:

  上述是在等腰直角三角形中的情況,那么在一般情況下的直角三角形中,是否也存在這一結論呢?于是再利用多媒體投影出P100圖 19.2.2(一般直角三角形)。學(xué)生可以同樣求出正方形P和Q的面積,只是求正方形R的面積有一些困難,這時(shí)可讓學(xué)生在預先準備的方格紙上畫(huà)出圖形,再剪一剪、拼一拼,通過(guò)小組合作、交流后,學(xué)生就能夠發(fā)現:對于一般的以整數為邊長(cháng)的直角三角形也存在兩直角邊的平方和等于斜邊的平方。通過(guò)學(xué)生的動(dòng)手操作、合作交流,來(lái)獲取知識,這樣設計有利于突破難點(diǎn),也讓學(xué)生體會(huì )到觀(guān)察、猜想、歸納的數學(xué)思想及學(xué)習過(guò)程,提高學(xué)生的分析問(wèn)題和解決問(wèn)題的能力。

  3、再問(wèn):

  當邊長(cháng)不為整數的直角三角形是否也存在這一結論呢?投影例題:一個(gè)邊長(cháng)分別為1.5,3.6,3.9這種含有小數的直角三角形,讓學(xué)生計算。這樣設計的目的是讓學(xué)生體會(huì )到“從特殊到一般”的情形,這樣歸納的結論更具有一般性。

  (三)歸納驗證:

  1、歸納:

  通過(guò)動(dòng)手操作、合作交流,探索邊長(cháng)為整數的等腰直角三角形到一般的直角三角形,再到邊長(cháng)為小數的直角三角形的兩直角邊與斜邊的關(guān)系,讓學(xué)生在整個(gè)學(xué)習過(guò)程中感受學(xué)數學(xué)的樂(lè )趣,,使學(xué)生學(xué)會(huì )“文字語(yǔ)言”與“數學(xué)語(yǔ)言”這兩種表達方式,各小組“發(fā)言人”的積極表現,整堂課充分發(fā)揮學(xué)生的主體作用,真正獲取知識,解決問(wèn)題。

  2、驗證:

  先后三次驗證“勾股定理”這一結論,期間學(xué)生動(dòng)手進(jìn)行了畫(huà)圖、剪圖、拼圖,還有測量、計算等活動(dòng),使學(xué)生從中體會(huì )到數形結合和從特殊到一般的數學(xué)思想,而且這一過(guò)程也有利于培養學(xué)生嚴謹、科學(xué)的學(xué)習態(tài)度。

  (四)問(wèn)題解決:

  1、讓學(xué)生解決開(kāi)始上課前所提出的問(wèn)題,前后呼應,讓學(xué)生體會(huì )到成功的快樂(lè )。

  2、自學(xué)課本P101例1,然后完成P102練習。

  (五)課堂小結:

  1、小組成員從內容、數學(xué)思想方法、獲取知識的途徑進(jìn)行小結,后由“發(fā)言人”匯報,小組間要互相比一比,看看哪一個(gè)小組表現最佳。

  2、教師用多媒體介紹“勾股定理史話(huà)”。

 。1)《周髀算徑》:西周的商高(公元一千多年前)發(fā)現了“勾三股四弦五”這一規律。

 。2)康熙數學(xué)專(zhuān)著(zhù)《勾股圖解》有五種求解直角三角形的方法,積求勾股法是其獨創(chuàng )。

  3、目的:對學(xué)生進(jìn)行愛(ài)國主義教育,激勵學(xué)生奮發(fā)向上。

  (六)布置作業(yè):

  課本P104習題19.2中的第1.2.3題。目的一方面是鞏固“勾股定理”,另一方面是讓學(xué)生進(jìn)一步體會(huì )定理與實(shí)際生活的聯(lián)系。

  以上內容,我僅從“說(shuō)教材”,“說(shuō)學(xué)情”、“說(shuō)教法”、“說(shuō)學(xué)法”、“說(shuō)教學(xué)過(guò)程”上來(lái)說(shuō)明這堂課“教什么”和“怎么教”,也闡述了“為什么這樣教”,希望各位專(zhuān)家領(lǐng)導對本次說(shuō)課提出寶貴的意見(jiàn),謝謝!

  勾股定理的說(shuō)課稿 篇7

  今天我說(shuō)課的課題是《勾股定理》。本課選自九年義務(wù)教育人教版八年級數學(xué)下冊第十八章第一節的第一課時(shí)。

  一、教學(xué)背景分析

  1、教材分析

  本節課是學(xué)生在已經(jīng)掌握了直角三角形有關(guān)性質(zhì)的基礎上進(jìn)行學(xué)習的,通過(guò)2002年國際數學(xué)家大會(huì )的會(huì )徽圖案,引入勾股定理,進(jìn)而探索直角三角形三邊的數量關(guān)系,并應用它解決問(wèn)題。學(xué)好本節不僅為下節勾股定理的逆定理打下良好基礎,而且為今后學(xué)習解直角三角形奠定基礎,在實(shí)際生活中用途很大。勾股定理是直角三角形的一條非常重要的性質(zhì),是幾何中一個(gè)非常重要的定理,它揭示了直角三角形三邊之間的數量關(guān)系,將數與形密切地聯(lián)系起來(lái),它有著(zhù)豐富的歷史背景,在理論上占有重要的地位。

  2、學(xué)情分析

  通過(guò)前面的學(xué)習,學(xué)生已具備一些平面幾何的知識,能夠進(jìn)行一般的推理和論證,但如何通過(guò)拼圖來(lái)證明勾股定理,學(xué)生對這種解決問(wèn)題的途徑還比較陌生,存在一定的難度,因此,我采用直觀(guān)教具、多媒體等手段,讓學(xué)生動(dòng)手、動(dòng)口、動(dòng)腦,化難為易,深入淺出,讓學(xué)生感受學(xué)習知識的樂(lè )趣。

  3、教學(xué)目標:

  根據八年級學(xué)生的認知水平,依據新課程標準和教學(xué)大綱的要求,我制定了如下的教學(xué)目標:

  知識與能力目標:了解勾股定理的發(fā)現過(guò)程,掌握勾股定理的內容,會(huì )用面積法證明勾股定理;培養在實(shí)際生活中發(fā)現問(wèn)題總結規律的意識和能力.

  過(guò)程與方法目標:通過(guò)創(chuàng )設情境,導入新課,引導學(xué)生探索勾股定理,并應用它解決問(wèn)題,運用了觀(guān)察、演示、實(shí)驗、操作等方法學(xué)習新知。

  情感態(tài)度價(jià)值觀(guān)目標:感受數學(xué)文化,激發(fā)學(xué)生學(xué)習的熱情,體驗合作學(xué)習成功的喜悅,滲透數形結合的思想。

  4、教學(xué)重點(diǎn)、難點(diǎn)

  通過(guò)分析可見(jiàn),勾股定理是平面幾何的重要定理,有著(zhù)承上啟下的作用,在今后的生活實(shí)踐中有著(zhù)廣泛應用。因此我確定本課的教學(xué)

  重難點(diǎn)為探索和證明勾股定理.

  二、教材處理

  根據學(xué)生情況,為有效培養學(xué)生能力,在教學(xué)過(guò)程中,以創(chuàng )設問(wèn)題情境為先導,運用直觀(guān)教具、多媒體等手段,激發(fā)學(xué)生學(xué)習興趣,調動(dòng)學(xué)生學(xué)習積極性,并開(kāi)展以探究活動(dòng)為主的教學(xué)模式,邊設疑,邊講解,邊操作,邊討論,啟發(fā)學(xué)生提出問(wèn)題,分析問(wèn)題,進(jìn)而解決問(wèn)題,以達到突出重點(diǎn),攻破難點(diǎn)的目的。

  三、教學(xué)策略

  1、教法

  “教必有法,而教無(wú)定法”,只有方法恰當,才會(huì )有效。根據本課內容特點(diǎn)和八年級學(xué)生思維活動(dòng)特點(diǎn),我采用了引導發(fā)現教學(xué)法,合作探究教學(xué)法,逐步滲透教學(xué)法和師生共研相結合的方法。

  2、學(xué)法

  “授人以魚(yú),不如授人以漁”,通過(guò)設計問(wèn)題序列,引導學(xué)生主動(dòng)探究新知,合作交流,體現學(xué)習的自主性,從不同層次發(fā)掘不同學(xué)生的不同能力,從而達到發(fā)展學(xué)生思維能力的目的,發(fā)掘學(xué)生的創(chuàng )新精神。

  3、教學(xué)模式

  根據新課標要求,要積極倡導自主、合作、探究的學(xué)習方式,我采用了創(chuàng )設情境——探究新知——反饋訓練的教學(xué)模式,使學(xué)生獲取知識,提高素質(zhì)能力。

  四、教學(xué)過(guò)程

 。ㄒ唬﹦(chuàng )設情境,引入新課

  利用多媒體課件,給學(xué)生出示2002年國際數學(xué)家大會(huì )的場(chǎng)面,通過(guò)觀(guān)察會(huì )徽圖案,提出問(wèn)題:你見(jiàn)過(guò)這個(gè)圖案嗎?你聽(tīng)說(shuō)過(guò)勾股定理嗎?從現實(shí)生活中提出趙爽弦圖,激發(fā)學(xué)生學(xué)習的熱情和求知欲,同時(shí)為探索勾股定理提供背景材料,進(jìn)而引出課題。

 。ǘ┮龑W(xué)生,探究新知

  1、初步感知定理:這一環(huán)節選擇教材的圖片,講述畢達哥拉斯到朋友家做客時(shí)發(fā)現用磚鋪成的地面,其中含有直角三角形三邊的數量關(guān)系,創(chuàng )設感知情境,提出問(wèn)題:現在也請你觀(guān)察,看看有什么發(fā)現?教師配合演示,使問(wèn)題更形象、具體。適當補充等腰直角三角形邊長(cháng)為1、2時(shí),所形成的規律,使學(xué)生再次感知發(fā)現的規律。

  2、提出猜想:在活動(dòng)1的基礎上,學(xué)生已發(fā)現一些規律,進(jìn)一步通過(guò)活動(dòng)2進(jìn)行看一看,想一想,做一做,讓學(xué)生感受不只是等腰直角三角形才具有這樣的性質(zhì),使學(xué)生由淺到深,由特殊到一般的提出問(wèn)題,啟發(fā)學(xué)生得出猜想,直角三角形的兩直角邊的平方和等于斜邊的平方。

  3、證明猜想:是不是所有的直角三角形都有這樣的特點(diǎn)呢?這就需要我們對一個(gè)一般的直角三角形進(jìn)行證明.通過(guò)活動(dòng)3,充分引導學(xué)生利用直觀(guān)教具,進(jìn)行拼圖實(shí)驗,在動(dòng)手操作中放手讓學(xué)生思考、討論、合作、交流,探究解決問(wèn)題的多種方法,鼓勵創(chuàng )新,小組競賽,引入競爭,教師參與討論,與學(xué)生交流,獲取信息,從而有針對性地引導學(xué)生進(jìn)行證法的探究,使學(xué)生創(chuàng )造性地得出拼圖的多種方法,并使學(xué)生在學(xué)習的過(guò)程中,感受到自我創(chuàng )造的快樂(lè ),從而分散了教學(xué)難點(diǎn),發(fā)現了利用面積相等去證明勾股定理的方法。培養了學(xué)生的發(fā)散思維、一題多解和探究數學(xué)問(wèn)題的能力。

  4、總結定理:讓學(xué)生自己總結定理,不完善之處由教師補充。在前面探究活動(dòng)的基礎上,學(xué)生很容易得出直角三角形的三邊數量關(guān)系即勾股定理,培養了學(xué)生的語(yǔ)言表達能力和歸納概括能力。

 。ㄈ┓答佊柧,鞏固新知

  學(xué)生對所學(xué)的知識是否掌握了,達到了什么程度?為了檢測學(xué)生對本課目標的達成情況和加強對學(xué)生能力的培養,設計一組有坡度的練習題:

  A組動(dòng)腦筋,想一想,是本節基礎知識的理解和直接應用;

  B組求陰影部分的面積,建立了新舊知識的聯(lián)系,培養學(xué)生綜合運用知識的能力。

  C組議一議,是一道實(shí)際應用題型,給學(xué)生施展才智的機會(huì ),讓學(xué)生獨立思考后,討論交流得出解決問(wèn)題的方法,增強了數學(xué)來(lái)源于實(shí)踐,反過(guò)來(lái)又作用于實(shí)踐的應用意識,達到了學(xué)以致用的目的。

 。ㄋ模w納小結,深化新知

  本節課你有哪些收獲?你最感興趣的地方是什么?你想進(jìn)一步研究的的問(wèn)題是什么?通過(guò)小結,使學(xué)生進(jìn)一步明確掌握教學(xué)目標,使知識成為體系。

 。ㄎ澹┎贾米鳂I(yè),拓展新知

  讓學(xué)生收集有關(guān)勾股定理的證明方法,下節課展示、交流.使本節知識得到拓展、延伸,培養了學(xué)生能力和思維的深刻性,讓學(xué)生感受數學(xué)深厚的文化底蘊。

 。┌鍟(shū)設計,明確新知

  本節課的板書(shū)設計分為三塊:一塊是拼圖方法,一塊是勾股定理;一塊是例題解析。它突出了重點(diǎn),層次清楚,便于學(xué)生掌握,為獲得知識服務(wù)。

【勾股定理的說(shuō)課稿】相關(guān)文章:

《勾股定理》說(shuō)課稿07-10

勾股定理的說(shuō)課稿07-30

勾股定理說(shuō)課稿04-27

《勾股定理》說(shuō)課稿02-14

勾股定理說(shuō)課稿精選06-14

勾股定理說(shuō)課稿03-25

勾股定理的說(shuō)課稿04-21

《勾股定理》的說(shuō)課稿06-08

勾股定理的說(shuō)課稿01-30

《勾股定理》說(shuō)課稿11-11