三角形內角和的教學(xué)設計模板
作為一名教學(xué)工作者,就有可能用到教學(xué)設計,教學(xué)設計是對學(xué)業(yè)業(yè)績(jì)問(wèn)題的解決措施進(jìn)行策劃的過(guò)程。教學(xué)設計要怎么寫(xiě)呢?下面是小編為大家收集的三角形內角和的教學(xué)設計模板,歡迎大家分享。
三角形內角和的教學(xué)設計1
【設計理念】
新課標重視讓學(xué)生經(jīng)歷數學(xué)知識的形成過(guò)程,要求教師創(chuàng )設有效的問(wèn)題情境激發(fā)學(xué)生的參與欲望,提供足夠的時(shí)間和空間讓學(xué)生經(jīng)歷觀(guān)察、猜測、驗證、交流反思等過(guò)程,使學(xué)生在動(dòng)手操作、合作交流等活動(dòng)中親身經(jīng)歷知識的形成過(guò)程。這樣,學(xué)生不僅可以掌握知識,而且可以積累探究數學(xué)問(wèn)題的活動(dòng)經(jīng)驗,發(fā)展空間觀(guān)念和推理能力。
【教材內容】
新人教版義務(wù)教育課程標準實(shí)驗教科書(shū)四年級下冊數學(xué)第67頁(yè)例6、“做一做”及練習十六的第1、2、3題。
【教材分析】
三角形的內角和是三角形的一個(gè)重要特征。本課是安排在三角形的概念及分類(lèi)之后教學(xué)的,它是學(xué)生以后學(xué)習多邊形的內角和及解決其它實(shí)際問(wèn)題的基礎。教材很重視知識的探索與發(fā)現,安排兩次實(shí)驗操作活動(dòng)。教材呈現教學(xué)內容時(shí),不但重視體現知識的形成過(guò)程,而且注意留給學(xué)生充分進(jìn)行自主探索和交流的空間和時(shí)間,為教師靈活組織教學(xué)提供了清晰的思路。概念的形成沒(méi)有直接給出結論,而是通過(guò)量、拼等活動(dòng),讓學(xué)生探索、實(shí)驗、交流、推理歸納出三角形的內角和是180°。
【學(xué)情分析】
。、在學(xué)習本課時(shí),學(xué)生已經(jīng)有了探索三角形內角和的知識基礎:知道直角和平角的度數,會(huì )用量角器度量角的度數;認識長(cháng)方形、正方形,知道他們的四個(gè)角都是直角;認識了三角形,知道了三角形按角分有銳角三角形、直角三角形和鈍角三角形;已經(jīng)知道了等腰三角形和正三角形。
。、已經(jīng)有一部分學(xué)生知道了三角形內角和是180°,只是知其然而不知所以然。
【教學(xué)目標】
1、通過(guò)“量、剪、拼”等活動(dòng)發(fā)現、驗證三角形的內角和是180°,并能運用這個(gè)知識解決一些簡(jiǎn)單的問(wèn)題。
2、在觀(guān)察、猜想、操作、合作、分析交流等具體活動(dòng)中,提高動(dòng)手操作能力,積累基本的數學(xué)活動(dòng)經(jīng)驗,發(fā)展空間觀(guān)念和推理能力。
3、在參與數學(xué)學(xué)習活動(dòng)的過(guò)程中,獲得成功的體驗,感受數學(xué)探究的嚴謹與樂(lè )趣。
【教學(xué)重點(diǎn)】
探索發(fā)現、驗證“三角形內角和是180°”,并運用這個(gè)知識解決實(shí)際問(wèn)題。
【教學(xué)難點(diǎn)】驗證“三角形的內角和是180°”。
【教具準備】
多媒體課件;銳角三角形、直角三角形、鈍角三角形紙片若干個(gè)各類(lèi)三角形(也包括等邊、等腰)、長(cháng)方形、正方形若干個(gè);每人一個(gè)量角器;一把剪刀;每人一副三角尺。
【教學(xué)步驟】
一、復習舊知 引出課題
1、你已經(jīng)知道有關(guān)三角形的哪些知識?
2、出示課題:三角形的內角和
設計意圖:也自然導入新課。
二、提出問(wèn)題 引發(fā)猜想
1、提出問(wèn)題:看到這個(gè)課題,你有什么問(wèn)題想問(wèn)的?
預設:
。1)三角形的內角指的是哪些角?
。2)三角形的內角和是什么意思?
。3)三角形的內角一共是多少度?
2、引發(fā)猜想
猜一猜:三角形的內角和是多少度?你是怎么猜的?
設計意圖:提出一個(gè)問(wèn)題比解決一個(gè)問(wèn)題更重要。課始在復習三角形已學(xué)知識后,引導學(xué)生提出有關(guān)三角形的新問(wèn)題,讓學(xué)生學(xué)習自己想研究的內容,無(wú)疑激發(fā)了學(xué)生的學(xué)習興趣,培養了學(xué)生的問(wèn)題意識。由于學(xué)生在平時(shí)使用三角板時(shí)已經(jīng)若隱若現地有了特殊的直角三角形的內角和是180度這一感覺(jué),因此本環(huán)節,要求學(xué)生猜一猜三角形的內角和是多少,并說(shuō)說(shuō)是怎么猜的,以激發(fā)學(xué)生已有知識經(jīng)驗,并體會(huì )到猜想要合理且有根據,同時(shí)也為推理驗證的引出作必要的鋪墊。
三、操作驗證 形成結論
1、交流驗證方法:
。1)用什么方法證明三角形的內角和是180度呢?
預設:
、倭克惴
、诩羝捶
、壅燮捶ǖ
。2)三角形的個(gè)數有無(wú)數個(gè),驗證哪些三角形可以代表所有的三角形?我們的操作過(guò)程怎么分工才會(huì )做到省時(shí)又高效?
2、動(dòng)手驗證
3、全班匯報交流
4、小結:剛才通過(guò)大家的動(dòng)手操作驗證了三角形的內角和是180°度。但動(dòng)手操作會(huì )存在一定的誤差,我們的結論也可能存在偏差。
5、方法拓展
推理驗證:用直角三角形的內角和來(lái)證明其他三角形內角和是180°的方法。
6、形成結論:任意三角形的內角和是180°。
設計意圖:《標準》指出:“教師應激發(fā)學(xué)生的積極性,向學(xué)生提供充分從事數學(xué)活動(dòng)的機會(huì ),幫助他們在自主探索和合作交流的過(guò)程中真正理解和掌握基本的數學(xué)知識與技能、數學(xué)思想和方法,獲得廣泛的數學(xué)活動(dòng)經(jīng)驗!辈聹y后先獨立思考驗證的方法,再進(jìn)行全班交流,給學(xué)生充分的活動(dòng)時(shí)間和空間,讓學(xué)生動(dòng)手操作,使學(xué)生在量、剪、拼、折等一系列操作活動(dòng)中發(fā)現了三角形內角和是180°這個(gè)結論。在探索活動(dòng)前,交流如何使研究樣本具有代表性和全面性與如何分工做到操作省時(shí)高效這兩個(gè)問(wèn)題,培養學(xué)生嚴謹、科學(xué)正確的研究態(tài)度,讓學(xué)生在活動(dòng)中積累基本的數學(xué)活動(dòng)經(jīng)驗,為后續的學(xué)習提供了經(jīng)驗支撐。
四、應用結論 解決問(wèn)題
1、鞏固新知:想一想,算一算。
2、解決問(wèn)題:等腰三角形風(fēng)箏的頂角是多少度?
3、辨析訓練,完善結論。
五、課堂總結,歸納研究方法
今天這節課你學(xué)到了哪些知識?你是怎樣得到這些知識的?
六、課后延伸:用今天所學(xué)的方法繼續研究四邊形的內角和。
七、板書(shū)設計:
三角形的內角和
猜測:三角形的內角和是180°?
驗證:量拼
結論:任意三角形的內角和是180°
三角形內角和的教學(xué)設計2
教學(xué)內容:
義務(wù)教育課程表準教科書(shū)數學(xué)(人教版)四年級下冊85頁(yè)、例題5。
教學(xué)目標:
1、讓學(xué)生親自動(dòng)手,通過(guò)量、剪、拼等活動(dòng)發(fā)現、證實(shí)三角形內角和是180°,并會(huì )應用這一知識解決生活中簡(jiǎn)單的實(shí)際問(wèn)題。
2、讓學(xué)生在動(dòng)手獲取知識的過(guò)程中,培養學(xué)生的創(chuàng )新意識、探索精神和實(shí)踐能力。并通過(guò)動(dòng)手操作把三角形內角和轉化為平角的探究活動(dòng),向學(xué)生滲透“轉化”數學(xué)思想。
3、使學(xué)生體驗成功的喜悅,激發(fā)學(xué)生主動(dòng)學(xué)習數學(xué)的興趣。
教學(xué)重點(diǎn):
讓學(xué)生經(jīng)歷“三角形內角和是180°”這一知識的形成、發(fā)展和應用的全過(guò)程。
教學(xué)準備:
多媒體課件、學(xué)具。
教學(xué)過(guò)程:
一、激趣引入
。ㄒ唬┱J識三角形內角
1、我們已經(jīng)認識了三角形,什么是三角形?誰(shuí)能說(shuō)三角形按角分類(lèi),可以分成哪幾類(lèi)?(學(xué)生回答問(wèn)題、)
2、請看屏幕(課件演示三條線(xiàn)段圍成三角形的過(guò)程)。
三條線(xiàn)段圍成三角形后,在三角形內形成了三個(gè)角,(課件分別出現三個(gè)角的弧線(xiàn)),我們把三角形里面的這三個(gè)角分別叫做三角形的內角。
。ǘ┰O疑,激發(fā)學(xué)生探究新知的心理
1、請同學(xué)們幫老師畫(huà)一個(gè)三角形,能做到嗎?(激發(fā)學(xué)生主動(dòng)學(xué)習的心理)請聽(tīng)要求,畫(huà)一個(gè)有兩個(gè)內角是直角的三角形,開(kāi)始。(設置矛盾,使學(xué)生在矛盾中去發(fā)現問(wèn)題、探究問(wèn)題。)
學(xué)生安要求畫(huà)三角形、
2、問(wèn):有誰(shuí)畫(huà)出來(lái)啦?
。ㄕn件演示):是不是畫(huà)成這個(gè)樣子了?只能畫(huà)兩個(gè)直角。問(wèn)題出現在哪兒呢?這一定有什么奧秘?那就讓我們一起來(lái)研究吧!
二、動(dòng)手操作,探究新知
。ㄒ唬┭芯刻厥馊切蔚膬冉呛
1、請看屏幕。(播放課件)熟悉這副三角板嗎?(課件閃動(dòng)其中的一塊三角板)
學(xué)生回答:90°、45°、45°。(課件演示:由三角板抽象出三角形)
這個(gè)三角形各角的度數。它們的和是多少?
學(xué)生回答:是180°。
追問(wèn):你是怎樣知道的?
生:90°+45°+45°=180°。
把三角形三個(gè)內角的度數合起來(lái)就叫三角形的內角和。
板題:三角形內角和
2、(課件演示另一塊三角板的各角的度數。)這個(gè)呢?它的內角和是多少度呢?
90°+60°+30°=180°。
3、從剛才兩個(gè)三角形內角和的計算中,你發(fā)現什么?
這兩個(gè)三角形的內角和都是180°。這兩個(gè)三角形都是直角三角形,并且是特殊的三角形。
。ǘ┭芯恳话闳切蝺冉呛
1、猜一猜。
猜一猜其它三角形的內角和是多少度呢?同桌互相說(shuō)說(shuō)自己的看法。
2、操作、驗證一般三角形內角和是180°。
。1)小組合作、進(jìn)行探究。
1、所有三角形的內角和究竟是不是180°,你能用什么辦法來(lái)證明,使別人相信呢?那就請四人小組共同研究吧!
2、每個(gè)小組都有不同類(lèi)型的三角形。每種類(lèi)型的三角形都需要驗證,小組活動(dòng)的要求如下:課件顯示
組長(cháng)負責填寫(xiě)表格,組員每人負責量一個(gè)三角形的每個(gè)內角,并記錄下來(lái),最后算出這個(gè)三角形的內角和,把結果告訴組長(cháng)。
量一量,完成表格。
三角形的名稱(chēng)
內角和的度數
銳角三角形
直角三角形
。2)小組匯報結果。
請各小組匯報探究結果。
。ㄈ├^續探究
沒(méi)有得到統一的結果。這個(gè)辦法不能使人很信服,怎么辦?還有其它辦法嗎?
引導學(xué)生用拼合的辦法,就是把三角形的三個(gè)內角放在一起,可以拼成一個(gè)平角。
1、用拼合的方法驗證。
小組內完成,活動(dòng)的要求同上、
拼一拼,完成表格、
三角形的名稱(chēng)
是否可以拼成平角
銳角三角形
直角三角形
對角三角形
2、匯報驗證結果。
先驗證銳角三角形,我們得出什么結論?
。ㄤJ角三角形的內角拼在一起是一個(gè)平角,所以銳角三角形的內角和是180°。
直角三角形的內角和也是180°。
鈍角三角形的內角和還是180°)。
3、課件演示驗證結果。
請看屏幕,老師也來(lái)驗證一下,是不是跟你們得到的結果一樣?(播放課件)
我們可以得出一個(gè)怎樣的結論?
。ㄈ切蔚膬冉呛褪180°。)
。ń處煱鍟(shū):三角形的內角和是180°學(xué)生齊讀一遍。)
為什么用測量計算的方法不能得到統一的結果呢?
。康牟粶。有的量角器有誤差。)
三、解決疑問(wèn)。
現在誰(shuí)能說(shuō)說(shuō)不能畫(huà)出有兩個(gè)直角的一個(gè)三角形的原因?(讓學(xué)生體驗成功的喜悅)
。ㄒ驗槿切蔚膬冉呛褪180°,在一個(gè)三角形中如果有兩個(gè)直角,它的內角和就大于180°。)
在一個(gè)三角形中,有沒(méi)有可能有兩個(gè)鈍角呢?
。ú豢赡。)
追問(wèn):為什么?
。ㄒ驗閮蓚(gè)銳角和已經(jīng)超過(guò)了180°。)
問(wèn):那有沒(méi)有可能有兩個(gè)銳角呢?
。ㄓ,在一個(gè)三角形中最少有兩個(gè)內角是銳角。)
四、應用三角形的內角和解決問(wèn)題。
1、看圖求出未知角的度數。(知識的`直接運用,數學(xué)信息很淺顯)
2、85頁(yè)做一做:
在一個(gè)三角形中,∠1=140度,∠3=35度,求∠2的度數。
3、88頁(yè)第9、10題(數學(xué)信息較為隱藏和生活中的實(shí)際問(wèn)題)
4、89頁(yè)16題、思考題
板書(shū)設計:
三角形內角和
180°180°180°
三角形內角和180°
三角形內角和的教學(xué)設計3
教學(xué)內容:
北師版小學(xué)數學(xué)四年級下冊《探索與發(fā)現(一)—三角形內角和》
教材分析:
《三角形內角和》是北師大版小學(xué)數學(xué)四年級下冊第二單元第三節的內容,是在學(xué)生認識了直角三角形、銳角三角形、鈍角三角形、等腰三角形和等邊三角形的特點(diǎn)的基礎上進(jìn)一步探究三角形有關(guān)性質(zhì)中的三個(gè)內角和的性質(zhì),是“空間與圖形”領(lǐng)域的重要內容之一。教材在呈現教學(xué)內容時(shí),不但重視知識的形成過(guò)程,而且注意留給學(xué)生充分進(jìn)行自主探索和交流的空間。三角形的內角和的性質(zhì)沒(méi)有直接給出,而是提供了豐富多彩的動(dòng)手實(shí)踐的素材,讓學(xué)生通過(guò)探索、實(shí)驗、討論、交流而獲得,從而讓學(xué)生在動(dòng)手操作,積極探索的.活動(dòng)過(guò)程中掌握知識,積累數學(xué)經(jīng)驗,同時(shí)發(fā)展空間觀(guān)念和推理能力,不斷提高自己的思維水平。
學(xué)情分析:
本節課是在學(xué)生學(xué)過(guò)角的度量、三角形的特征和分類(lèi)等知識的基礎上進(jìn)行教學(xué)的,學(xué)生已經(jīng)具備一定的關(guān)于三角形的認識的直接經(jīng)驗,也已具備了一些相應的三角形知識,這為感受、理解、抽象“三角形的內角和”的性質(zhì),打下了堅實(shí)的基礎。同時(shí),通過(guò)近四年的數學(xué)學(xué)習,學(xué)生已初步掌握了一些學(xué)習數學(xué)的基本方法,具備了一定的動(dòng)手操作、觀(guān)察比較和合作交流的能力。能在小組長(cháng)帶領(lǐng)下,圍繞數學(xué)問(wèn)題開(kāi)展初步的討論活動(dòng),能比較清楚的表達自己的意見(jiàn),認真傾聽(tīng)他人的發(fā)言,具備了初步的數學(xué)交流能力。
教學(xué)目標:
1、讓學(xué)生經(jīng)歷“猜想、驗證、歸納、應用”等知識形成的全過(guò)程,探索并發(fā)現“三角形內角和等于1800,”,并能應用規律解決一些實(shí)際問(wèn)題。
2、在探索過(guò)程中培養學(xué)生的動(dòng)手實(shí)踐能力、協(xié)作能力及創(chuàng )新意識和探究精神,發(fā)展學(xué)生的空間思維能力,同時(shí)使學(xué)生養成獨立思考的習慣。
3、在活動(dòng)中,讓學(xué)生體驗主動(dòng)探究數學(xué)規律的樂(lè )趣,體驗學(xué)數學(xué)的價(jià)值,激發(fā)學(xué)生學(xué)習數學(xué)的熱情。
教學(xué)重點(diǎn):
讓學(xué)生經(jīng)歷“猜想、驗證、歸納、應用”等知識形成的全過(guò)程,探索并發(fā)現三角形內角和等于1800,,并能應用規律解決一些實(shí)際問(wèn)題。
教學(xué)難點(diǎn):
掌握探究方法(猜想-驗證-歸納總結),學(xué)會(huì )用“轉化”的數學(xué)思想探究三角形內角和。
教學(xué)用具:
表格、課件。
學(xué)具準備:
各種三角形、剪刀、量角器。
一、創(chuàng )設情境 揭示課題。
1、復習
提問(wèn):前面我們已經(jīng)學(xué)習了三角形的一些知識,誰(shuí)能介紹一下呢?
生回憶三角形的特征,三角形分類(lèi),三角形具有穩定性等內容。
2、引入
三角形具有穩定形,三角形家族是一個(gè)團結的家族,但今天家族內部卻發(fā)生了激勵的爭論。
播放課件,提問(wèn):它們在爭論什么?
什么是三角形的內角和?(板書(shū):內角和)
講解:三角形內兩條邊所夾的角就叫做這個(gè)三角形的內角。每個(gè)三角形都有三個(gè)內角,這三個(gè)內角的度數加起來(lái)就是三角形的內角和。
二、自主探究,合作交流。
。ㄒ唬┨岢鰡(wèn)題:
1、你認為誰(shuí)說(shuō)得對?你是怎么想的?
2、你有什么辦法可以比較一下這兩個(gè)三角形的內角和呢?
學(xué)生可能會(huì )說(shuō):用量角器量一量三個(gè)內角各是多少度,把它們加起來(lái),再比較。
。ǘ┨剿髋c發(fā)現
1、初步探索,提出猜想。
。1)量一量
、倭私饣顒(dòng)要求:(屏幕顯示)
A、在練習本上畫(huà)一個(gè)三角形,量一量三角形三個(gè)內角的度數并標注。(測量時(shí)要認真,力求準確)
B、把測量結果記錄在表格中,并計算三角形內角和。
C、討論:從剛才的測量和計算結果中,你發(fā)現了什么?
。ㄒ龑仡櫥顒(dòng)要求)
、、小組合作。
、、匯報交流。
你們測量了幾個(gè)三角形?它們的內角和分別是多少?從測量和計算結果中你們發(fā)現了什么?
。ㄒ龑W(xué)生發(fā)現每個(gè)三角形的三個(gè)內角和都在1800,左右。)
。2)提出猜想
剛才我們通過(guò)測量和計算發(fā)現了三角形內角和都在180度左右,那你能不能大膽的猜測一下:三角形內角和是否相等?三角形的內角和等于多少度呢?(板書(shū):猜測)
2、動(dòng)手操作,驗證猜想
這個(gè)猜想是否成立呢?我們要想辦法來(lái)驗證一下。(板書(shū)驗證)
引導:1800,跟我們學(xué)過(guò)的什么角有關(guān)?我們課前準備了各種三角形紙片,你能不能利用這些三角形紙片,想辦法把三角形的三個(gè)內角轉換成一個(gè)平角呢?
。1)、小組合作,討論驗證方法。
。2)分組匯報,討論質(zhì)疑
學(xué)生可能會(huì )出現的方法:
A、撕拼的方法
把三個(gè)角撕下來(lái),拼在一起,3個(gè)角拼成了一個(gè)平角,所以三角形內角和就是1800,。
討論:銳角三角形、直角三角形、鈍角三角形是否都能得出相同的結論呢?
B、折一折的方法
把三角形的角1折向它的對邊,使頂點(diǎn)落在對邊上,然后另外兩個(gè)角相向對折,使它們的頂點(diǎn)與角1的頂點(diǎn)互相重合,也證明了三角形內角和等于1800。
討論:銳角三角形、直角三角形、鈍角三角形能否得到相同的結論?
C提問(wèn):還有沒(méi)有其它的方法?
3、回顧兩種方法,歸納總結,得出結論。
。1)課件演示:兩種方法的展示。
。2)引導學(xué)生得出結論。
孩子們,三角形內角和到底等于多少度呢?”
學(xué)生一定會(huì )高興地喊:“1800!
。3)總結方法,齊讀結論
我們通過(guò)動(dòng)作操作,折一折,拼一拼,把三角形的三個(gè)內角轉換成了一個(gè)平角,成功的得到了這個(gè)結論,讓我們?yōu)樽约旱某晒恼!齊讀結論。(板書(shū):得到結論)
。4)解釋測量誤差
為什么我們剛才通過(guò)測量,計算出來(lái)的三角形內角和不是1800,呢?
那是因為我們在測量時(shí),由于測量工具、測量操作等各方面的原因,使我們的測量結果存在一定的誤差。實(shí)際上,三角形內角和就等于1800
。ㄈ、回顧問(wèn)題:
現在你知道這兩個(gè)三角形誰(shuí)說(shuō)得對了嗎?(都不對。
為什么?請大家一起,自信肯定的告訴我。
生:因為三角形內角和等于1800,。(齊讀)
三、鞏固深化,加深理解。
1、試一試:數學(xué)書(shū)28頁(yè)第3題
∠A=180°— 90°—30°
2、練一練:數學(xué)書(shū)29頁(yè)第一題(生獨立解決)
∠A=180°— 75°— 28°
3、小法官:數學(xué)書(shū)29頁(yè)第二題
4、拓展創(chuàng )新
A D G
B C E F H R
ABC的內角和是( )
DEF的內角和是( )
GHR的內角和呢?
小結:三角形的形狀和大小雖然不同,但是三角形的內角和都是180度。
四、回顧課堂,滲透數學(xué)方法。
1、總結:猜想—驗證—歸納—應用的數學(xué)方法。
2、介紹:三角形內角和等于180度這個(gè)結論的由來(lái);數學(xué)領(lǐng)域里還未被證明的其它猜想,如哥德巴赫猜想、霍啟猜想、龐加萊猜想等。
3、課堂延伸活動(dòng):探索——多邊形內角和
【三角形內角和的教學(xué)設計模板】相關(guān)文章:
多邊形的內角和教學(xué)設計02-09
《三角形的內角和》優(yōu)秀說(shuō)課稿模板12-28
三角形的內角和課件和教案05-12
初中三角形內角和優(yōu)秀的教學(xué)設計范文(精選5篇)12-27
《三角形的內角和》教學(xué)反思(通用12篇)12-25
三角形的內角和試講稿11-16
《三角形的內角和》說(shuō)課稿7篇11-05
《三角形的特性》的優(yōu)秀教學(xué)設計模板(精選5篇)12-28
《獅子和鹿》教學(xué)設計和反思12-16