《二次函數》教案
作為一名老師,通常需要準備好一份教案,通過(guò)教案準備可以更好地根據具體情況對教學(xué)進(jìn)程做適當的必要的調整。那么優(yōu)秀的教案是什么樣的呢?以下是小編整理的《二次函數》教案,歡迎大家借鑒與參考,希望對大家有所幫助。
《二次函數》教案1
學(xué)習目標:
1、能夠分析和表示變量間的二次函數關(guān)系,并解決用二次函數所表示的問(wèn)題。
2、用三種方式表示變量間二次函數關(guān)系,從不同側面對函數性質(zhì)進(jìn)行研究。
3、通過(guò)解決用二次函數所表示的問(wèn)題,培養學(xué)生的運用能力
學(xué)習重點(diǎn):
能夠分析和表示變量之間的二次函數關(guān)系,并解決用二次函數所表示的問(wèn)題。
能夠根據二次函數的不同表示方式,從不同的側面對函數性質(zhì)進(jìn)行研究。
學(xué)習難點(diǎn):
能夠分析和表示變量之間的二次函數關(guān)系,并解決用二次函數所表示的問(wèn)題。
學(xué)習過(guò)程:
一、學(xué)前準備
函數的三種表示方式,即表格、表達式、圖象法,我們都不陌生,比如在商店的廣告牌上這樣寫(xiě)著(zhù):一種豆子的售價(jià)與購買(mǎi)數量之間的關(guān)系如下:
x(千克) 0 0。5 1 1。5 2 2。5 3
y(元) 0 1 2 3 4 5 6
這是售貨員為了便于計價(jià),常常制作這種表示售價(jià)與數量關(guān)系的表,即用表格表示函數。用表達式和圖象法來(lái)表示函數的情形我們更熟悉。這節課我們不僅要掌握三種表示方式,而且要體會(huì )三種方式之間的聯(lián)系與各自不同的特點(diǎn),在什么情況下用哪一種方式更好?
二、探究活動(dòng)
。ㄒ唬┖献魈骄浚
矩形的周長(cháng)是20cm,設它一邊長(cháng)為 ,面積為 cm2。 變化的規律是什么?你能分別用函數表達式、表格和圖象表示出來(lái)嗎?
交流完成:
。1)一邊長(cháng)為x cm,則另一邊長(cháng)為 cm,所以面積為: 用函數表達式表示: =________________________________。
。2) 表格表示:
1 2 3 4 5 6 7 8 9
10—
。3)畫(huà)出圖象
討論:函數的圖象在第一象限,可是我們知道開(kāi)口向下的拋物線(xiàn)可以到達第四象限和第三象限,思考原因
。ǘ┳h一議
。1)在上述問(wèn)題中,自變量x的取值范圍是什么?
。2)當x取何值時(shí),長(cháng)方形的面積最大?它的最大面積是多少?你是怎樣得到的?請你描述一下y隨x的變化而變化的情況。
點(diǎn)撥:自變量x的取值范圍即是使函數有意義的自變量的取值范圍。請大家互相交流。
。1)因為x是邊長(cháng),所以x應取 數,即x 0,又另一邊長(cháng)(10—x)也應大于 ,即10—x 0,所以x 10,這兩個(gè)條件應該同時(shí)滿(mǎn)足,所以x的取值范圍是 。
。2)當x取何值時(shí),長(cháng)方形的面積最大,就是求自變量取何值時(shí),函數有最大值,所以要把二次函數y=—x2+10x化成頂點(diǎn)式。當x=— 時(shí),函數y有最大值y最大= 。當x= 時(shí),長(cháng)方形的面積最大,最大面積是25cm2。
可以通過(guò)觀(guān)察圖象得知。也可以代入頂點(diǎn)坐標公式中求得。。
。ㄈ┳鲆蛔觯簩W(xué)生獨立思考完成P62,P63的函數表達式,表格,圖象問(wèn)題
。1)用函數表達式表示:y=________。
。2)用表格表示:
。3)用圖象表示:
三、學(xué)習體會(huì )
本節課你有哪些收獲?你還有哪些疑問(wèn)?
四、自我測試
1、把長(cháng)1。6米的鐵絲圍成長(cháng)方形ABCD,設寬為x(m),面積為y(m2)。則當最大時(shí),所取的值是( )
A 0。5 B 0。4 C 0。3 D 0。6
2、兩個(gè)數的和為6,這兩個(gè)數的積最大可能達到多少?利用圖象描述乘積與因數之間的關(guān)系。
3、把一根長(cháng)120cm的鐵絲分為兩部分,每一部分均彎曲成一個(gè)正方形,它們的面積和是多少?它們的面積和的最小值是多少?
。ㄟx作題)邊長(cháng)為12的正方形鐵片,中間剪去一個(gè)邊長(cháng)為x(cm)的小正方形鐵片,剩下的四方框鐵片的面積y(cm2)與x(cm)之間的函數表達式為
《二次函數》教案2
二次函數的應用
教學(xué)設計思想:本節主要研究的是與二次函數有關(guān)的實(shí)際問(wèn)題,重點(diǎn)是實(shí)際應用題,在教學(xué)過(guò)程中讓學(xué)生運用二次函數的知識分析問(wèn)題、解決問(wèn)題,在運用中體會(huì )二次函數的實(shí)際意義。二次函數與一元二次方程、一元二次不等式有密切聯(lián)系,在學(xué)習過(guò)程中應把二次函數與之有關(guān)知識聯(lián)系起來(lái),融會(huì )貫通,使學(xué)生的認識更加深刻。另外,在利用圖像法解方程時(shí),圖像應畫(huà)得準確一些,使求得的解更準確,在求解過(guò)程中體會(huì )數形結合的思想。
教學(xué)目標:
1.知識與技能
會(huì )運用二次函數計其圖像的知識解決現實(shí)生活中的實(shí)際問(wèn)題。
2.過(guò)程與方法
通過(guò)本節內容的學(xué)習,提高自主探索、團結合作的能力,在運用知識解決問(wèn)題中體會(huì )二次函數的應用意義及數學(xué)轉化思想。
3.情感、態(tài)度與價(jià)值觀(guān)
通過(guò)學(xué)生之間的討論、交流和探索,建立合作意識和提高探索能力,激發(fā)學(xué)習的興趣和欲望。
教學(xué)重點(diǎn):解決與二次函數有關(guān)的實(shí)際應用題。
教學(xué)難點(diǎn):二次函數的應用。
教學(xué)媒體:幻燈片,計算器。
教學(xué)安排:3課時(shí)。
教學(xué)方法:小組討論,探究式。
教學(xué)過(guò)程:
第一課時(shí):
、.情景導入:
師:由二次函數的一般形式y= (a0),你會(huì )有什么聯(lián)想?
生:老師,我想到了一元二次方程的一般形式 (a0)。
師:不錯,正因為如此,有時(shí)我們就將二次函數的有關(guān)問(wèn)題轉化為一元二次方程的問(wèn)題來(lái)解決。
現在大家來(lái)做下面這兩道題:(幻燈片顯示)
1.解方程 。
2.畫(huà)出二次函數y= 的圖像。
教師找兩個(gè)學(xué)生解答,作為板書(shū)。
、.新課講授
同學(xué)們思考下面的問(wèn)題,可以共同討論:
1.二次函數y= 的圖像與x軸交點(diǎn)的橫坐標是什么?它與方程 的根有什么關(guān)系?
2.如果方程 (a0)有實(shí)數根,那么它的根和二次函數y= 的圖像與x軸交點(diǎn)的橫坐標有什么關(guān)系?
生甲:老師,由畫(huà)出的圖像可以看出與x軸交點(diǎn)的橫坐標是-1、2;方程的兩個(gè)根是-1、2,我們發(fā)現方程的兩個(gè)解正好是圖像與x軸交點(diǎn)的橫坐標。
生乙:我們經(jīng)過(guò)討論,認為如果方程 (a0)有實(shí)數根,那么它的根等于二次函數y= 的圖像與x軸交點(diǎn)的橫坐標。
師:說(shuō)的很好;
教師總結:一般地,如果二次函數y= 的圖像與x軸相交,那么交點(diǎn)的橫坐標就是一元二次方程 =0的根。
師:我們知道方程的兩個(gè)解正好是二次函數圖像與x軸的兩個(gè)交點(diǎn)的橫坐標,那么二次函數圖像與x軸的交點(diǎn)問(wèn)題可以轉化為一元二次方程的根的問(wèn)題,我們共同研究下面問(wèn)題。
[學(xué)法]:通過(guò)實(shí)例,體會(huì )二次函數與一元二次方程的關(guān)系,解一元二次方程實(shí)質(zhì)上就是求二次函數為0的自變量x的取值,反映在圖像上就是求拋物線(xiàn)與x軸交點(diǎn)的橫坐標。
問(wèn)題:已知二次函數y= 。
(1)觀(guān)察這個(gè)函數的圖像(圖34-9),一元二次方程 =0的兩個(gè)根分別在哪兩個(gè)整數之間?
(2)①由在0至1范圍內的x值所對應的y值(見(jiàn)下表),你能說(shuō)出一元二次方程 =0精確到十分位的正根嗎?
x 0 0.1 0.2[ 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
y -1 -0.89 -0.76 -0.61 -0.44 -0.25 -0.04 -0.19 0.44 0.71 1
、谟稍0.6至0.7范圍內的x值所對應的y值(見(jiàn)下表),你能說(shuō)出一元二次方程 =0精確到百分位的正根嗎?
x 0.60 0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68 0.69 0.70
y -0.040 -0.018 0.004 0.027 0.050 0.073 0.096 0.119 0.142 0.166 0.190
(3)請仿照上面的方法,求出一元二次方程 =0的另一個(gè)精確到十分位的根。
(4)請利用一元二次方程的求根公式解方程 =0,并檢驗上面求出的近似解。
第一問(wèn)很簡(jiǎn)單,可以請一名同學(xué)來(lái)回答這個(gè)問(wèn)題。
生:一個(gè)根在(-2,-1)之間,另一個(gè)在(0,1)之間;根據上面我們得出的結論。
師:回答的很正確;我們知道圖像與x軸交點(diǎn)的橫坐標就是方程的根,所以我們可以通過(guò)觀(guān)看圖象就能說(shuō)出方程的兩個(gè)根,F在我們共同解答第(2)問(wèn)。
教師分析:我們知道方程的一個(gè)根在(0,1)之間,那么我們觀(guān)看(0,1)這個(gè)區間的圖像,y值是隨著(zhù)x值的增大而不斷增大的,y值也是從負數過(guò)渡到正數,而當y=0時(shí)所對應的x值就是方程的根,F在我們要求的是方程的近似解,那么同學(xué)們想一想,答案是什么呢?
生:通過(guò)列表可以看出,在(0.6,0.7)范圍內,y值有-0.04至0.19,如果方程精確到十分位的正根,x應該是0.6。
類(lèi)似的,我們得出方程精確到百分位的正根是0.62。
對于第三問(wèn),教師可以讓學(xué)生自己動(dòng)手解答,教師在下面巡視,觀(guān)察其中發(fā)現的問(wèn)題。
最后師生共同利用求根公式,驗證求出的近似解。
教師總結:我們發(fā)現,當二次函數 (a0)的圖像與x軸有交點(diǎn)時(shí),根據圖像與x軸的交點(diǎn),就可以確定一元二次方程 的根在哪兩個(gè)連續整數之間。為了得到更精確的近似解,對在這兩個(gè)連續整數之間的x的值進(jìn)行細分,并求出相應得y值,列出表格,這樣就可以得到一元二次方程 所要求的精確度的近似解。
、.練習
已知一個(gè)矩形的長(cháng)比寬多3m,面積為6 。求這個(gè)矩形的長(cháng)(精確到十分位)。
板書(shū)設計:
二次函數的應用(1)
一、導入 總結:
二、新課講授 三、練習
第二課時(shí):
師:在我們的實(shí)際生活中你還遇到過(guò)哪些運用二次函數的實(shí)例?
生:老師,我見(jiàn)過(guò)好多。如周長(cháng)固定時(shí)長(cháng)方形的面積與它的長(cháng)之間的關(guān)系:圓的面積與它的直徑之間的關(guān)系等。
師:好,看這樣一個(gè)問(wèn)題你能否解決:
活動(dòng)1:如圖34-10,張伯伯準備利用現有的一面墻和40m長(cháng)的籬笆,把墻外的空地圍成四個(gè)相連且面積相等的矩形養兔場(chǎng)。
回答下面的問(wèn)題:
1.設每個(gè)小矩形一邊的長(cháng)為xm,試用x表示小矩形的另一邊的長(cháng)。
2.設四個(gè)小矩形的總面積為y ,請寫(xiě)出用x表示y的函數表達式。
3.你能利用公式求出所得函數的圖像的頂點(diǎn)坐標,并說(shuō)出y的最大值嗎?
4.你能畫(huà)出這個(gè)函數的圖像,并借助圖像說(shuō)出y的最大值嗎?
學(xué)生思考,并小組討論。
解:已知周長(cháng)為40m,一邊長(cháng)為xm,看圖知,另一邊長(cháng)為 m。
由面積公式得 y= (x )
化簡(jiǎn)得 y=
代入頂點(diǎn)坐標公式,得頂點(diǎn)坐標x=4,y=5。y的最大值為5。
畫(huà)函數圖像:
通過(guò)圖像,我們知道y的最大值為5。
師:通過(guò)上面這個(gè)例題,我們能總結出幾種求y的最值得方法呢?
生:兩種;一種是畫(huà)函數圖像,觀(guān)察最高(低)點(diǎn),可以得到函數的最值;另外一種可以利用頂點(diǎn)坐標公式,直接計算最值。
師:這位同學(xué)回答的很好,看來(lái)同學(xué)們是都理解了,也知道如何求函數的最值。
總結:由此可以看出,在利用二次函數的圖像和性質(zhì)解決實(shí)際問(wèn)題時(shí),常常需要根據條件建立二次函數的表達式,在求最大(或最小)值時(shí),可以采取如下的方法:
(1)畫(huà)出函數的圖像,觀(guān)察圖像的最高(或最低)點(diǎn),就可以得到函數的最大(或最小)值。
(2)依照二次函數的性質(zhì),判斷該二次函數的開(kāi)口方向,進(jìn)而確定它有最大值還是最小值;再利用頂點(diǎn)坐標公式,直接計算出函數的最大(或最小)值。
師:現在利用我們前面所學(xué)的知識,解決實(shí)際問(wèn)題。
活動(dòng)2:如圖34-11,已知AB=2,C是AB上一點(diǎn),四邊形ACDE和四邊形CBFG,都是正方形,設BC=x,
(1)AC=______;
(2)設正方形ACDE和四邊形CBFG的總面積為S,用x表示S的函數表達式為S=_____.
(3)總面積S有最大值還是最小值?這個(gè)最大值或最小值是多少?
(4)總面積S取最大值或最小值時(shí),點(diǎn)C在A(yíng)B的什么位置?
教師講解:二次函數 進(jìn)行配方為y= ,當a0時(shí),拋物線(xiàn)開(kāi)口向上,此時(shí)當x= 時(shí), ;當a0時(shí),拋物線(xiàn)開(kāi)口向下,此時(shí)當x= 時(shí), 。對于本題來(lái)說(shuō),自變量x的最值范圍受實(shí)際條件的制約,應為02。此時(shí)y相應的就有最大值和最小值了。通過(guò)畫(huà)出圖像,可以清楚地看到y的最大值和最小值以及此時(shí)x的取值情況。在作圖像時(shí)一定要準確認真,同時(shí)還要考慮到x的取值范圍。
解答過(guò)程(板書(shū))
解:(1)當BC=x時(shí),AC=2-x(02)。
(2)S△CDE= ,S△BFG= ,
因此,S= + =2 -4x+4=2 +2,
畫(huà)出函數S= +2(02)的圖像,如圖34-4-3。
(3)由圖像可知:當x=1時(shí), ;當x=0或x=2時(shí), 。
(4)當x=1時(shí),C點(diǎn)恰好在A(yíng)B的中點(diǎn)上。
當x=0時(shí),C點(diǎn)恰好在B處。
當x=2時(shí),C點(diǎn)恰好在A(yíng)處。
[教法]:在利用函數求極值問(wèn)題,一定要考慮本題的實(shí)際意義,弄明白自變量的取值范圍。在畫(huà)圖像時(shí),在自變量允許取得范圍內畫(huà)。
練習:
如圖,正方形ABCD的邊長(cháng)為4,P是邊BC上一點(diǎn),QPAP,并且交DC與點(diǎn)Q。
(1)Rt△ABP與Rt△PCQ相似嗎?為什么?
(2)當點(diǎn)P在什么位置時(shí),Rt△ADQ的面積最小?最小面積是多少?
小結:利用二次函數的增減性,結合自變量的取值范圍,則可求某些實(shí)際問(wèn)題中的極值,求極值時(shí)可把 配方為y= 的形式。
板書(shū)設計:
二次函數的應用(2)
活動(dòng)1: 總結方法:
活動(dòng)2: 練習:
小結:
第三課時(shí):
我們這部分學(xué)習的是二次函數的應用,在解決實(shí)際問(wèn)題時(shí),常常需要把二次函數問(wèn)題轉化為方程的問(wèn)題。
師:在日常生活中,有哪些量之間的關(guān)系是二次函數關(guān)系?大家觀(guān)看下面的圖片。
(幻燈片顯示交通事故、緊急剎車(chē))
師:你知道兩輛車(chē)在行駛時(shí)為什么要保持一定的距離嗎?
學(xué)生思考,討論。
師:汽車(chē)在行駛中,由于慣性作用,剎車(chē)后還要向前滑行一段距離才能停住,這段距離叫做剎車(chē)距離。剎車(chē)距離是分析、處理道路交通事故的一個(gè)重要原因。
請看下面一個(gè)道路交通事故案例:
甲、乙兩車(chē)在限速為40km/h的濕滑彎道上相向而行,待望見(jiàn)對方。同時(shí)剎車(chē)時(shí)已經(jīng)晚了,兩車(chē)還是相撞了。事后經(jīng)現場(chǎng)勘查,測得甲車(chē)的剎車(chē)距離是12m,乙車(chē)的剎車(chē)距離超過(guò)10m,但小于12m。根據有關(guān)資料,在這樣的濕滑路面上,甲車(chē)的剎車(chē)距離S甲(m)與車(chē)速x(km/h)之間的關(guān)系為S甲=0.1x+0.01x2,乙車(chē)的剎車(chē)距離S乙(m)與車(chē)速x(km/h)之間的關(guān)系為S乙= 。
教師提問(wèn):1.你知道甲車(chē)剎車(chē)前的行駛速度嗎?甲車(chē)是否違章超速?
2.你知道乙車(chē)剎車(chē)前的行駛速度在什么范圍內嗎?乙車(chē)是否違章超速?
學(xué)生思考!教師引導。
對于二次函數S甲=0.1x+0.01x2:
(1)當S甲=12時(shí),我們得到一元二次方程0.1x+0.01x2=12。請談?wù)勥@個(gè)一元二次方程這個(gè)一元二次方程的實(shí)際意義。
(2)當S甲=11時(shí),不經(jīng)過(guò)計算,你能說(shuō)明兩車(chē)相撞的主要責任者是誰(shuí)嗎?
(3)由乙車(chē)的剎車(chē)距離比甲車(chē)的剎車(chē)距離短,就一定能說(shuō)明事故責任者是甲車(chē)嗎?為什么?
生甲:我們能知道甲車(chē)剎車(chē)前的行駛速度,知道甲車(chē)的剎車(chē)距離,又知道剎車(chē)距離與車(chē)速的關(guān)系式,所以車(chē)速很容易求出,求得x=30km,小于限速40km/h,故甲車(chē)沒(méi)有違章超速。
生乙:同樣,知道乙車(chē)剎車(chē)前的行駛速度,知道乙車(chē)的剎車(chē)距離的取值范圍,又知道剎車(chē)距離與車(chē)速的關(guān)系式,求得x在40km/h與48km/h(不包含40km/h)之間?梢(jiàn)乙車(chē)違章超速了。
同學(xué)們,從這個(gè)事例當中我們可以體會(huì )到,如果二次函數y= (a0)的某一函數值y=M。就可利用一元二次方程 =M,確定它所對應得x值,這樣,就把二次函數與一元二次方程緊密地聯(lián)系起來(lái)了。
下面看下面的這道例題:
當路況良好時(shí),在干燥的路面上,汽車(chē)的剎車(chē)距離s與車(chē)速v之間的關(guān)系如下表所示:
v/(km/h) 40 60 80 100 120
s/m 2 4.2 7.2 11 15.6
(1)在平面直角坐標系中描出每對(v,s)所對應的點(diǎn),并用光滑的曲線(xiàn)順次連結各點(diǎn)。
(2)利用圖像驗證剎車(chē)距離s(m)與車(chē)速v(km/h)是否有如下關(guān)系:
(3)求當s=9m時(shí)的車(chē)速v。
學(xué)生思考,親自動(dòng)手,提高學(xué)生自主學(xué)習的能力。
教師提問(wèn),學(xué)生回答正確答案,教師再進(jìn)行講解。
課上練習:
某產(chǎn)品的成本是20元/件,在試銷(xiāo)階段,當產(chǎn)品的售價(jià)為x元/件時(shí),日銷(xiāo)量為(200-x)件。
(1)寫(xiě)出用售價(jià)x(元/件)表示每日的銷(xiāo)售利潤y(元)的表達式。
(2)當日銷(xiāo)量利潤是1500元時(shí),產(chǎn)品的售價(jià)是多少?日銷(xiāo)量是多少件?
(3)當售價(jià)定為多少時(shí),日銷(xiāo)量利潤最大?最大日銷(xiāo)量利潤是多少?
課堂小結:本節課主要是利用函數求極值的問(wèn)題,解決此類(lèi)問(wèn)題時(shí),一定要考慮到本題的實(shí)際意義,弄明白自變量的取值范圍。在畫(huà)圖像時(shí),在自變量允許取的范圍內畫(huà)。
板書(shū)設計:
二次函數的應用(3)
一、案例 二、例題
分析: 練習:
總結:
數學(xué)網(wǎng)
《二次函數》教案3
教學(xué)設計
一 教學(xué)設計思路
通過(guò)小球飛行高度問(wèn)題展示二次函數與一元二次方程的聯(lián)系。然后進(jìn)一步舉例說(shuō)明,從而得出二次函數與一元二次方程的關(guān)系。最后通過(guò)例題介紹用二次函數的圖象求一元二次方程的根的方法。
二 教學(xué)目標
1 知識與技能
(1).經(jīng)歷探索函數與一元二次方程的關(guān)系的過(guò)程,體會(huì )方程與函數之間的聯(lián)系?偨Y出二次函數與x軸交點(diǎn)的個(gè)數與一元二次方程的根的個(gè)數之間的關(guān)系,表述何時(shí)方程有兩個(gè)不等的實(shí)根、兩個(gè)相等的實(shí)數和沒(méi)有實(shí)根.
(2).會(huì )利用圖象法求一元二次方程的近似解。
2 過(guò)程與方法
經(jīng)歷探索二次函數與一元二次方程的關(guān)系的過(guò)程,體會(huì )方程與函數之間的聯(lián)系.
三 情感態(tài)度價(jià)值觀(guān)
通過(guò)觀(guān)察二次函數圖象與x軸的交點(diǎn)個(gè)數,討論一元二次方程的根的情況培養學(xué)生自主探索意識,從中體會(huì )事物普遍聯(lián)系的觀(guān)點(diǎn),進(jìn)一步體會(huì )數形結合思想.
四 教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):方程與函數之間的聯(lián)系,會(huì )利用二次函數的圖象求一元二次方程的近似解。
難點(diǎn):二次函數與x軸交點(diǎn)的個(gè)數與一元二次方程的根的個(gè)數之間的關(guān)系。
五 教學(xué)方法
討論探索法
六 教學(xué)過(guò)程設計
(一)問(wèn)題的提出與解決
問(wèn)題 如圖,以20m/s的速度將小球沿與地面成30角的方向擊出時(shí),球的飛行路線(xiàn)將是一條拋物線(xiàn)。如果不考慮空氣阻力,球的飛行高度h(單位:m)與飛行時(shí)間t(單位:s)之間具有關(guān)系
h=20t5t2。
考慮以下問(wèn)題
(1)球的飛行高度能否達到15m?如能,需要多少飛行時(shí)間?
(2)球的飛行高度能否達到20m?如能,需要多少飛行時(shí)間?
(3)球的飛行高度能否達到20.5m?為什么?
(4)球從飛出到落地要用多少時(shí)間?
分析:由于球的飛行高度h與飛行時(shí)間t的關(guān)系是二次函數
h=20t-5t2。
所以可以將問(wèn)題中h的值代入函數解析式,得到關(guān)于t的一元二次方程,如果方程有合乎實(shí)際的解,則說(shuō)明球的飛行高度可以達到問(wèn)題中h的值:否則,說(shuō)明球的飛行高度不能達到問(wèn)題中h的值。
解:(1)解方程 15=20t5t2。 t24t+3=0。 t1=1,t2=3。
當球飛行1s和3s時(shí),它的高度為15m。
(2)解方程 20=20t-5t2。 t2-4t+4=0。 t1=t2=2。
當球飛行2s時(shí),它的高度為20m。
(3)解方程 20.5=20t-5t2。 t2-4t+4.1=0。
因為(-4)2-44.10。所以方程無(wú)解。球的飛行高度達不到20.5m。
(4)解方程 0=20t-5t2。 t2-4t=0。 t1=0,t2=4。
當球飛行0s和4s時(shí),它的高度為0m,即0s時(shí)球從地面飛出。4s時(shí)球落回地面。
由學(xué)生小組討論,總結出二次函數與一元二次方程的解有什么關(guān)系?
例如:已知二次函數y=-x2+4x的值為3。求自變量x的值。
分析 可以解一元二次方程-x2+4x=3(即x2-4x+3=0) 。反過(guò)來(lái),解方程x2-4x+3=0又可以看作已知二次函數y=x2-4+3的值為0,求自變量x的值。
一般地,我們可以利用二次函數y=ax2+bx+c深入討論一元二次方程ax2+bx+c=0。
(二)問(wèn)題的討論
二次函數(1)y=x2+x-2;
(2) y=x2-6x+9;
(3) y=x2-x+0。
的圖象如圖26.2-2所示。
(1)以上二次函數的圖象與x軸有公共點(diǎn)嗎?如果有,有多少個(gè)交點(diǎn),公共點(diǎn)的橫坐標是多少?
(2)當x取公共點(diǎn)的橫坐標時(shí),函數的值是多少?由此,你能得出相應的一元二次方程的根嗎?
先畫(huà)出以上二次函數的圖象,由圖像學(xué)生展開(kāi)討論,在老師的引導下回答以上的問(wèn)題。
可以看出:
(1)拋物線(xiàn)y=x2+x-2與x軸有兩個(gè)公共點(diǎn),它們的橫坐標是-2,1。當x取公共點(diǎn)的橫坐標時(shí),函數的值是0。由此得出方程x2+x-2=0的根是-2,1。
(2)拋物線(xiàn)y=x2-6x+9與x軸有一個(gè)公共點(diǎn),這點(diǎn)的橫坐標是3。當x=3時(shí),函數的值是0。由此得出方程x2-6x+9=0有兩個(gè)相等的實(shí)數根3。
(3)拋物線(xiàn)y=x2-x+1與x軸沒(méi)有公共點(diǎn), 由此可知,方程x2-x+1=0沒(méi)有實(shí)數根。
總結:一般地,如果二次函數y= 的圖像與x軸相交,那么交點(diǎn)的橫坐標就是一元二次方程 =0的根。
(三)歸納
一般地,從二次函數y=ax2+bx+c的圖象可知,
(1)如果拋物線(xiàn)y=ax2+bx+c與x軸有公共點(diǎn),公共點(diǎn)的橫坐標是x0,那么當x=x0時(shí),函數的值是0,因此x=x0就是方程ax2+bx+c=0的一個(gè)根。
(2)二次函數的圖象與x軸的位置關(guān)系有三種:沒(méi)有公共點(diǎn),有一個(gè)公共點(diǎn),有兩個(gè)公共點(diǎn)。這對應著(zhù)一元二次方程根的三種情況:沒(méi)有實(shí)數根,有兩個(gè)相等的實(shí)數根,有兩個(gè)不等的實(shí)數根。
由上面的結論,我們可以利用二次函數的圖象求一元二次方程的根。由于作圖或觀(guān)察可能存在誤差,由圖象求得的根,一般是近似的。
(四)例題
例 利用函數圖象求方程x2-2x-2=0的實(shí)數根(精確到0.1)。
解:作y=x2-2x-2的圖象(如圖),它與x軸的公共點(diǎn)的橫坐標大約是-0.7,2.7。
所以方程x2-2x-2=0的實(shí)數根為x1-0.7,x22.7。
七 小結
二次函數的圖象與x軸的位置關(guān)系有三種:沒(méi)有公共點(diǎn),有一個(gè)公共點(diǎn),有兩個(gè)公共點(diǎn)。這對應著(zhù)一元二次方程根的三種情況:沒(méi)有實(shí)數根,有兩個(gè)相等的實(shí)數根,有兩個(gè)不等的實(shí)數根。
。
八 板書(shū)設計
用函數觀(guān)點(diǎn)看一元二次方程
拋物線(xiàn)y=ax2+bx+c與方程ax2+bx+c=0的解之間的關(guān)系
例題
《二次函數》教案4
教學(xué)目標:
利用數形結合的數學(xué)思想分析問(wèn)題解決問(wèn)題。
利用已有二次函數的知識經(jīng)驗,自主進(jìn)行探究和合作學(xué)習,解決情境中的數學(xué)問(wèn)題,初步形成數學(xué)建模能力,解決一些簡(jiǎn)單的實(shí)際問(wèn)題。
在探索中體驗數學(xué)來(lái)源于生活并運用于生活,感悟二次函數中數形結合的美,激發(fā)學(xué)生學(xué)習數學(xué)的興趣,通過(guò)合作學(xué)習獲得成功,樹(shù)立自信心。
教學(xué)重點(diǎn)和難點(diǎn):
運用數形結合的思想方法進(jìn)行解二次函數,這是重點(diǎn)也是難點(diǎn)。
教學(xué)過(guò)程:
。ㄒ唬┮耄
分組復習舊知。
探索:從二次函數y=x2+4x+3在直角坐標系中的圖象中,你能得到哪些信息?
可引導學(xué)生從幾個(gè)方面進(jìn)行討論:
。1)如何畫(huà)圖
。2)頂點(diǎn)、圖象與坐標軸的交點(diǎn)
。3)所形成的三角形以及四邊形的面積
。4)對稱(chēng)軸
從上面的問(wèn)題導入今天的課題二次函數中的圖象與性質(zhì)。
。ǘ┬率冢
1、再探索:二次函數y=x2+4x+3圖象上找一點(diǎn),使形成的圖形面積與已知圖形面積有數量關(guān)系。例如:拋物線(xiàn)y=x2+4x+3的頂點(diǎn)為點(diǎn)A,且與x軸交于點(diǎn)B、C;在拋物線(xiàn)上求一點(diǎn)E使SBCE= SABC。
再探索:在拋物線(xiàn)y=x2+4x+3上找一點(diǎn)F,使BCE與BCD全等。
再探索:在拋物線(xiàn)y=x2+4x+3上找一點(diǎn)M,使BOM與ABC相似。
2、讓同學(xué)討論:從已知條件如何求二次函數的解析式。
例如:已知一拋物線(xiàn)的頂點(diǎn)坐標是C(2,1)且與x軸交于點(diǎn)A、點(diǎn)B,已知SABC=3,求拋物線(xiàn)的解析式。
。ㄈ┨岣呔毩
根據我們學(xué)校人人皆知的船模特色項目設計了這樣一個(gè)情境:
讓班級中的上科院小院士來(lái)簡(jiǎn)要介紹學(xué)校船模組的情況以及在繪制船模圖紙時(shí)也常用到拋物線(xiàn)的知識的情況,再出題:船身的龍骨是近似拋物線(xiàn)型,船身的最大長(cháng)度為48cm,且高度為12cm。求此船龍骨的拋物線(xiàn)的解析式。
讓學(xué)生在練習中體會(huì )二次函數的圖象與性質(zhì)在解題中的作用。
。ㄋ模┳寣W(xué)生討論小結(略)
。ㄎ澹┳鳂I(yè)布置
1、在直角坐標平面內,點(diǎn)O為坐標原點(diǎn),二次函數y=x2+(k—5)x—(k+4)的圖象交x軸于點(diǎn)A(x1,0)、B(x2,0)且(x1+1)(x2+1)=—8。
。1)求二次函數的解析式;
。2)將上述二次函數圖象沿x軸向右平移2個(gè)單位,設平移后的圖象與y軸的交點(diǎn)為C,頂點(diǎn)為P,求 POC的面積。
2、如圖,一個(gè)二次函數的圖象與直線(xiàn)y= x—1的交點(diǎn)A、B分別在x、y軸上,點(diǎn)C在二次函數圖象上,且CBAB,CB=AB,求這個(gè)二次函數的解析式。
3、盧浦大橋拱形可以近似看作拋物線(xiàn)的一部分,在大橋截面1:11000的比例圖上,跨度AB=5cm,拱高OC=0。9cm,線(xiàn)段DE表示大橋拱內橋長(cháng),DE∥AB,如圖1,在比例圖上,以直線(xiàn)AB為x軸,拋物線(xiàn)的對稱(chēng)軸為y軸,以1cm作為數軸的單位長(cháng)度,建立平面直角坐標系,如圖2。
。1)求出圖2上以這一部分拋物線(xiàn)為圖象的函數解析式,寫(xiě)出函數定義域;
。2)如果DE與AB的距離OM=0。45cm,求盧浦大橋拱內實(shí)際橋長(cháng)(備用數據: ,計算結果精確到1米)
《二次函數》教案5
二次函數的教學(xué)設計
教學(xué)內容:人教版九年義務(wù)教育初中第三冊第108頁(yè)
教學(xué)目標:
1。 1。 理解二次函數的意義;會(huì )用描點(diǎn)法畫(huà)出函數y=ax2的圖象,知道拋物線(xiàn)的有關(guān)概念;
2。 2。 通過(guò)變式教學(xué),培養學(xué)生思維的敏捷性、廣闊性、深刻性;
3。 3。 通過(guò)二次函數的教學(xué)讓學(xué)生進(jìn)一步體會(huì )研究函數的一般方法;加深對于數形結合思想認識。
教學(xué)重點(diǎn):二次函數的意義;會(huì )畫(huà)二次函數圖象。
教學(xué)難點(diǎn):描點(diǎn)法畫(huà)二次函數y=ax2的圖象,數與形相互聯(lián)系。
教學(xué)過(guò)程設計:
一 創(chuàng )設情景、建模引入
我們已學(xué)習了正比例函數及一次函數,現在來(lái)看看下面幾個(gè)例子:
1。寫(xiě)出圓的半徑是R(CM),它的面積S(CM2)與R的關(guān)系式
答:S=πR2。 ①
2。寫(xiě)出用總長(cháng)為60M的籬笆圍成矩形場(chǎng)地,矩形面積S(M2)與矩形一邊長(cháng)L(M)之間的關(guān)系
答:S=L(30-L)=30L-L2 ②
分析:①②兩個(gè)關(guān)系式中S與R、L之間是否存在函數關(guān)系?
S是否是R、L的一次函數?
由于①②兩個(gè)關(guān)系式中S不是R、L的一次函數,那么S是R、L的什么函數呢?這樣的函數大家能不能猜想一下它叫什么函數呢?
答:二次函數。
這一節課我們將研究二次函數的有關(guān)知識。(板書(shū)課題)
二 歸納抽象、形成概念
一般地,如果y=ax2+bx+c(a,b,c是常數,a≠0) ,
那么,y叫做x的二次函數。
注意:(1)必須a≠0,否則就不是二次函數了。而b,c兩數可以是零。(2) 由于二次函數的解析式是整式的形式,所以x的取值范圍是任意實(shí)數。
練習:1。舉例子:請同學(xué)舉一些二次函數的例子,全班同學(xué)判斷是否正確。
2。出難題:請同學(xué)給大家出示一個(gè)函數,請同學(xué)判斷是否是二次函數。
。ㄈ魧W(xué)生考慮不全,教師給予補充。如:;;; 的形式。)
。ㄍㄟ^(guò)學(xué)生觀(guān)察、歸納定義加深對概念的理解,既培養了學(xué)生的實(shí)踐能力,有培養了學(xué)生的探究精神。并通過(guò)開(kāi)放性的練習培養學(xué)生思維的發(fā)散性、開(kāi)放性。題目用了一些人性化的詞語(yǔ),也增添了課堂的趣味性。)
由前面一次函數的學(xué)習,我們已經(jīng)知道研究函數一般應按照定義、圖象、性質(zhì)、求解析式幾個(gè)方面進(jìn)行研究。二次函數我們也會(huì )按照定義、圖象、性質(zhì)、求解析式幾個(gè)方面進(jìn)行研究。
。ㄔ谶@里指出學(xué)習函數的一般方法,旨在及時(shí)進(jìn)行學(xué)法指導;并將此方法形成技能,以指導今后的學(xué)習;進(jìn)一步培養終身學(xué)習的能力。)
三 嘗試模仿、鞏固提高
讓我們先從最簡(jiǎn)單的二次函數y=ax2入手展開(kāi)研究
1。 1。 嘗試:大家知道一次函數的圖象是一條直線(xiàn),那么二次函數的圖象是什么呢?
請同學(xué)們畫(huà)出函數y=x2的圖象。
。▽W(xué)生分別畫(huà)圖,教師巡視了解情況。)
2。 2。 模仿鞏固:教師將了解到的各種不同圖象用實(shí)物投影向大家展示,到底哪一個(gè)對呢?下面師生共同畫(huà)出函數y=x2的圖象。
解:一、列表:
x | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
Y=x2 | 9 | 4 | 1 | 0 | 1 | 4 | 9 |
二、描點(diǎn)、連線(xiàn): 按照表格,描出各點(diǎn)。然后用光滑的曲線(xiàn),按照x(點(diǎn)的橫坐標)由小到大的順序把各點(diǎn)連結起來(lái)。
對照教師畫(huà)的圖象一一分析學(xué)生所畫(huà)圖象的正誤及原因,從而得到畫(huà)二次函數圖象的幾點(diǎn)注意。
練習:畫(huà)出函數;的圖象(請兩個(gè)同學(xué)板演)
X | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
Y=0。5X2 | 4。5 | 2 | 0。5 | 0 | 0。5 | 02 | 4。5 |
Y=-X2 | -9 | -4 | -1 | 0 | -1 | -4 | -9 |
畫(huà)好之后教師根據情況講評,并引導學(xué)生觀(guān)察圖象形狀得出:二次函數 y=ax2的圖象是一條拋物線(xiàn)。
。ㄟ@里,教師在學(xué)生自己探索嘗試的基礎上,示范畫(huà)圖象的方法和過(guò)程,希望學(xué)生學(xué)會(huì )畫(huà)圖象的方法;并及時(shí)安排練習鞏固剛剛學(xué)到的新知識,通過(guò)觀(guān)察,感悟拋物線(xiàn)名稱(chēng)的由來(lái)。)
三 運用新知、變式探究
畫(huà)出函數 y=5x2圖象
學(xué)生在畫(huà)圖象的過(guò)程當中遇到函數值較大的困難,不知如何是好。
x | -0。5 | -0。4 | -0。3 | -0。2 | -0。1 | 0 | 0。1 | 0。2 | 0。3 | 0。4 | 0。5 |
Y=5x2 | 1。25 | 0。8 | 0。45 | 0。2 | 0。05 | 0 | 0。05 | 0。2 | 0。45 | 0。8 | 1。25 |
教師出示已畫(huà)好的圖象讓學(xué)生觀(guān)察
注意:1。 畫(huà)圖象應描7個(gè)左右的點(diǎn),描的點(diǎn)越多圖象越準確。
2。 自變量X的取值應注意關(guān)于Y軸對稱(chēng)。
3。 對于不同的二次函數自變量X的取值應更加靈活,例如可以取分數。
四。 四。 歸納小結、延續探究
教師引導學(xué)生觀(guān)察表格及圖象,歸納y=ax2的性質(zhì),學(xué)生們暢所欲言,各抒己見(jiàn);互相改進(jìn),互相完善。最終得到如下性質(zhì):
一般的,二次函數y=ax2的圖象是一條拋物線(xiàn),對稱(chēng)軸是Y軸,頂點(diǎn)是坐標原點(diǎn);當a>0時(shí),圖象的開(kāi)口向上,最低點(diǎn)為(0,0);當a<0時(shí),圖象的開(kāi)口向下,最高點(diǎn)為(0,0)。
五 回顧反思、總結收獲
在這一環(huán)節中,教師請同學(xué)們回顧一節課的學(xué)習暢談自己的收獲或多、或少、或幾點(diǎn)、或全面,總之是人人有所得,個(gè)個(gè)有提高。這也正是新課標中所倡導的新的理念——不同的人在數學(xué)上得到不同的發(fā)展。
。ㄔ谡麄(gè)一節課上,基本上是學(xué)生講為主,教師講為輔。一些較為困難的問(wèn)題,我也鼓勵學(xué)生大膽思考,積極嘗試,不怕困難,一個(gè)人完不成,講不透,第二個(gè)人、第三個(gè)人補充,直到完成整個(gè)例題。這樣上課氣氛非;钴S,學(xué)生之間常會(huì )因為某個(gè)觀(guān)點(diǎn)的不同而爭論,這就給教師提出了更高的要求,一方面要控制好整節課的節奏,另一方面又要察言觀(guān)色,適時(shí)地對某些觀(guān)點(diǎn)作出判斷,或與學(xué)生一同討論。)
《二次函數》教案6
目標:
1.使學(xué)生掌握用待定系數法由已知圖象上一個(gè)點(diǎn)的坐標求二次函數y=ax2的關(guān)系式。
2. 使學(xué)生掌握用待定系數法由已知圖象上三個(gè)點(diǎn)的坐標求二次函數的關(guān)系式。
3.讓學(xué)生體驗二次函數的函數關(guān)系式的應用,提高學(xué)生用數學(xué)意識。
重點(diǎn)難點(diǎn):
重點(diǎn):已知二次函數圖象上一個(gè)點(diǎn)的坐標或三個(gè)點(diǎn)的坐標,分別求二次函數y=ax2、y=ax2+bx+c的關(guān)系式是的重點(diǎn)。
難點(diǎn):已知圖象上三個(gè)點(diǎn)坐標求二次函數的關(guān)系式是教學(xué)的難點(diǎn)。
教學(xué)過(guò)程:
一、創(chuàng )設問(wèn)題情境
如圖,某建筑的屋頂設計成橫截面為拋物線(xiàn)型(曲線(xiàn)AOB)的薄殼屋頂。它的拱高AB為4m,拱高CO為0.8m。施工前要先制造建筑模板,怎樣畫(huà)出模板的輪廓線(xiàn)呢?
分析:為了畫(huà)出符合要求的模板,通常要先建立適當的直角坐標系,再寫(xiě)出函數關(guān)系式,然后根據這個(gè)關(guān)系式進(jìn)行計算,放樣畫(huà)圖。
如圖所示,以AB的垂直平分線(xiàn)為y軸,以過(guò)點(diǎn)O的y軸的垂線(xiàn)為x軸,建立直角坐標系。這時(shí),屋頂的橫截面所成拋物線(xiàn)的頂點(diǎn)在原點(diǎn),對稱(chēng)軸是y軸,開(kāi)口向下,所以可設它的函數關(guān)系式為: y=ax2 (a<0) (1)
因為y軸垂直平分AB,并交AB于點(diǎn)C,所以CB=AB2 =2(cm),又CO=0.8m,所以點(diǎn)B的坐標為(2,-0.8)。
因為點(diǎn)B在拋物線(xiàn)上,將它的坐標代人(1),得 -0.8=a×22 所以a=-0.2
因此,所求函數關(guān)系式是y=-0.2x2。
請同學(xué)們根據這個(gè)函數關(guān)系式,畫(huà)出模板的輪廓線(xiàn)。
二、引申拓展
問(wèn)題1:能不能以A點(diǎn)為原點(diǎn),AB所在直線(xiàn)為x軸,過(guò)點(diǎn)A的x軸的垂線(xiàn)為y軸,建立直角坐標系?
讓學(xué)生了解建立直角坐標系的方法不是唯一的,以A點(diǎn)為原點(diǎn),AB所在的直線(xiàn)為x軸,過(guò)點(diǎn)A的x軸的垂線(xiàn)為y軸,建立直角坐標系也是可行的。
問(wèn)題2,若以A點(diǎn)為原點(diǎn),AB所在直線(xiàn)為x軸,過(guò)點(diǎn)A的x軸的垂直為y軸,建立直角坐標系,你能求出其函數關(guān)系式嗎?
分析:按此方法建立直角坐標系,則A點(diǎn)坐標為(0,0),B點(diǎn)坐標為(4,0),OC所在直線(xiàn)為拋物線(xiàn)的對稱(chēng)軸,所以有AC=CB,AC=2m,O點(diǎn)坐標為(2;0.8)。即把問(wèn)題轉化為:已知拋物線(xiàn)過(guò)(0,0)、(4,0);(2,0.8)三點(diǎn),求這個(gè)二次函數的關(guān)系式。
二次函數的一般形式是y=ax2+bx+c,求這個(gè)二次函數的關(guān)系式,跟以前學(xué)過(guò)求一次函數的關(guān)系式一樣,關(guān)鍵是確定o、6、c,已知三點(diǎn)在拋物線(xiàn)上,所以它的坐標必須適合所求的函數關(guān)系式;可列出三個(gè)方程,解此方程組,求出三個(gè)待定系數。
解:設所求的二次函數關(guān)系式為y=ax2+bx+c。
因為OC所在直線(xiàn)為拋物線(xiàn)的對稱(chēng)軸,所以有AC=CB,AC=2m,拱高OC=0.8m,
所以O點(diǎn)坐標為(2,0.8),A點(diǎn)坐標為(0,0),B點(diǎn)坐標為(4,0)。
由已知,函數的圖象過(guò)(0,0),可得c=0,又由于其圖象過(guò)(2,0.8)、(4,0),可得到4a+2b=0.816+4b=0 解這個(gè)方程組,得a=-15b=45 所以,所求的二次函數的關(guān)系式為y=-15x2+45x。
問(wèn)題3:根據這個(gè)函數關(guān)系式,畫(huà)出模板的輪廓線(xiàn),其圖象是否與前面所畫(huà)圖象相同?
問(wèn)題4:比較兩種建立直角坐標系的方式,你認為哪種建立直角坐標系方式能使解決問(wèn)題來(lái)得更簡(jiǎn)便?為什么?
(第一種建立直角坐標系能使解決問(wèn)題來(lái)得更簡(jiǎn)便,這是因為所設函數關(guān)系式待定系數少,所求出的函數關(guān)系式簡(jiǎn)單,相應地作圖象也容易)
請同學(xué)們閱瀆P18例7。
三、課堂練習: P18練習1.(1)、(3)2。
四、綜合運用
例1.如圖所示,求二次函數的關(guān)系式。
分析:觀(guān)察圖象可知,A點(diǎn)坐標是(8,0),C點(diǎn)坐標為(0,4)。從圖中可知對稱(chēng)軸是直線(xiàn)x=3,由于拋物線(xiàn)是關(guān)于對稱(chēng)軸的軸對稱(chēng)圖形,所以此拋物線(xiàn)在x軸上的另一交點(diǎn)B的坐標是(-2,0),問(wèn)題轉化為已知三點(diǎn)求函數關(guān)系式。
解:觀(guān)察圖象可知,A、C兩點(diǎn)的坐標分別是(8,0)、(0,4),對稱(chēng)軸是直線(xiàn)x=3。因為對稱(chēng)軸是直線(xiàn)x=3,所以B點(diǎn)坐標為(-2,0)。
設所求二次函數為y=ax2+bx+c,由已知,這個(gè)圖象經(jīng)過(guò)點(diǎn)(0,4),可以得到c=4,又由于其圖象過(guò)(8,0)、(-2,0)兩點(diǎn),可以得到64a+8b=-44a-2b=-4 解這個(gè)方程組,得a=-14b=32
所以,所求二次函數的關(guān)系式是y=-14x2+32x+4
練習: 一條拋物線(xiàn)y=ax2+bx+c經(jīng)過(guò)點(diǎn)(0,0)與(12,0),最高點(diǎn)的縱坐標是3,求這條拋物線(xiàn)的解析式。
五、小結:
二次函數的關(guān)系式有幾種形式,函數的關(guān)系式y=ax2+bx+c就是其中一種常見(jiàn)的形式。二次函數關(guān)系式的確定,關(guān)鍵在于求出三個(gè)待定系數a、b、c,由于已知三點(diǎn)坐標必須適合所求的函數關(guān)系式,故可列出三個(gè)方程,求出三個(gè)待定系數。
六、作業(yè)
1.P19習題 26.2 4.(1)、(3)、5。
2.選用課時(shí)作業(yè)優(yōu)化設計,
《二次函數》教案7
一、教學(xué)目標:
1.經(jīng)歷探索二次函數與一元二次方程的關(guān)系的過(guò)程,體會(huì )方程與函數之間的聯(lián)系.
2.理解拋物線(xiàn)交x軸的點(diǎn)的個(gè)數與一元二次方程的根的個(gè)數之間的關(guān)系,理解何時(shí)方程有兩個(gè)不等的實(shí)根、兩個(gè)相等的實(shí)數和沒(méi)有實(shí)根.
3.能夠利用二次函數的圖象求一元二次方程的近似根。
二、教學(xué)重點(diǎn)、難點(diǎn):
教學(xué)重點(diǎn):
1.體會(huì )方程與函數之間的聯(lián)系。
2.能夠利用二次函數的圖象求一元二次方程的近似根。
教學(xué)難點(diǎn):
1.探索方程與函數之間關(guān)系的過(guò)程。
2.理解二次函數與x軸交點(diǎn)的個(gè)數與一元二次方程的根的個(gè)數之間的關(guān)系。
三、教學(xué)方法:啟發(fā)引導 合作交流
四:教具、學(xué)具:課件
五、教學(xué)媒體:計算機、實(shí)物投影。
六、教學(xué)過(guò)程:
檢查預習 引出課題
預習作業(yè):
1.解方程:(1)x2+x-2=0; (2) x2-6x+9=0; (3) x2-x+1=0; (4) x2-2x-2=0.
2. 回顧一次函數與一元一次方程的關(guān)系,利用函數的圖象求方程3x-4=0的解.
師生行為:教師展示預習作業(yè)的內容,指名回答,師生共同回顧舊知,教師做出適當總結和評價(jià)。
教師重點(diǎn)關(guān)注:學(xué)生回答問(wèn)題結論準確性,能否把前后知識聯(lián)系起來(lái),2題的格式要規范。
設計意圖:這兩道預習題目是對舊知識的回顧,為本課的教學(xué)起到鋪墊的作用,1題中的三個(gè)方程是課本中觀(guān)察欄目中的三個(gè)函數式的變式,這三個(gè)方程把二次方程的根的三種情況體現出來(lái),讓學(xué)生回顧二次方程的相關(guān)知識;2題是一次函數與一元一次方程的關(guān)系的問(wèn)題,這題的設計是讓學(xué)生用學(xué)過(guò)的熟悉的知識類(lèi)比探究本課新知識。
《二次函數》教案8
本節課在二次函數y=ax2和y=ax2+c的圖象的基礎上,進(jìn)一步研究y=a(x-h)2和y=a(x-h)2+k的圖象,并探索它們之間的關(guān)系和各自的性質(zhì).旨在全面掌握所有二次函數的圖象和性質(zhì)的變化情況.同時(shí)對二次函數的研究,經(jīng)歷了從簡(jiǎn)單到復雜,從特殊到一般的過(guò)程:先是從y=x2開(kāi)始,然后是y=ax2,y=ax2+c,最后是y=a(x-h)2,y=a(x-h)2+k,y=ax2+bx+c.符合學(xué)生的認知特點(diǎn),體會(huì )建立二次函數對稱(chēng)軸和頂點(diǎn)坐標公式的必要性.
在教學(xué)中,主要是讓學(xué)生自己動(dòng)手畫(huà)圖象,通過(guò)自己的觀(guān)察、交流、對比、概括和反思[
等探索活動(dòng),使學(xué)生達到對拋物線(xiàn)自身特點(diǎn)的認識和對二次函數性質(zhì)的理解.并能利用它的性質(zhì)解決問(wèn)題.
2.4二次函數y=ax2+bx+c的圖象(一)
教學(xué)目標
(一)教學(xué)知識點(diǎn)[
1.能夠作出函數y=a(x-h)2和y=a(x-h)2+k的圖象,并能理解它與y=ax2的圖象的關(guān)系.理解a,h,k對二次函數圖象的影響.
2.能夠正確說(shuō)出y=a(x-h)2+k圖象的開(kāi)口方向、對稱(chēng)軸和頂點(diǎn)坐標.
(二)能力訓練要求
1.通過(guò)學(xué)生自己的探索活動(dòng),對二次函數性質(zhì)的研究,達到對拋物線(xiàn)自身特點(diǎn)的認識和對二次函數性質(zhì)的理解.
2.經(jīng)歷探索二次函數的圖象的作法和性質(zhì)的過(guò)程,培養學(xué)生的探索能力.
(三)情感與價(jià)值觀(guān)要求
1.經(jīng)歷觀(guān)察、猜想、總結等數學(xué)活動(dòng)過(guò)程,發(fā)展合情推理能力和初步的演繹推理能力,能有條理地、清晰地闡述自己的觀(guān)點(diǎn).
2.讓學(xué)生學(xué)會(huì )與人合作,并能與他人交流思維的過(guò)程和結果.
教學(xué)重點(diǎn)
1.經(jīng)歷探索二次函數y=ax2+bx+c的圖象的作法和性質(zhì)的過(guò)程.
2.能夠作出y=a(x-h)2和y=a(x-h)2+k的'圖象,并能理解它與y=ax2的圖象的關(guān)系,理解a、h、k對二次函數圖象的影響.
3.能夠正確說(shuō)出y=a(x-h)2+k圖象的開(kāi)口方向、對稱(chēng)軸和頂點(diǎn)坐標.
教學(xué)難點(diǎn)
能夠作出y=a(x-h)2和y=a(x-h)2+k的圖象,并能夠理解它與y=ax2的圖象的關(guān)系,理解a、h、k對二次函數圖象的影響.
教學(xué)方法
探索比較總結法.
教具準備
投影片四張
第一張:(記作2.4.1 A)
第二張:(記作2.4.1 B)
第三張:(記作2.4.1 C)
第四張:(記作2.4.1 D)
教學(xué)過(guò)程
、.創(chuàng )設問(wèn)題情境、引入新課
[師]我們已學(xué)習過(guò)兩種類(lèi)型的二次函數,即y=ax2與y=ax2+c,知道它們都是軸對稱(chēng)圖形,對稱(chēng)軸都是y軸,有最大值或最小值.頂點(diǎn)都是原點(diǎn).還知道y=ax2+c的圖象是函數y=ax2的圖象經(jīng)過(guò)上下移動(dòng)得到的,那么y=ax2的圖象能否左右移動(dòng)呢?它左右移動(dòng)后又會(huì )得到什么樣的函數形式,它又有哪些性質(zhì)呢?本節課我們就來(lái)研究有關(guān)問(wèn)題.
、.新課講解
一、比較函數y=3x2與y=3(X-1)2的圖象的性質(zhì).
投影片:(2.4 A)
(1)完成下表,并比較3x2和3(x-1)2的值,
它們之間有什么關(guān)系?
X -3 -2 -1 0 1 2 3 4
3x2
3(x-1)2
(2)在下圖中作出二次函數y=3(x-1)2的圖象.你是怎樣作的?
(3)函數y=3(x-1)2的圖象與y=3x2的圖象有什么關(guān)系?它是軸對稱(chēng)圖形嗎?它的對稱(chēng)軸和頂點(diǎn)坐標分別是什么?
(4)x取哪些值時(shí),函數y=3(x-1)2的值隨x值的增大而增大?x取哪些值時(shí),函數y=3(x-1)2的值隨x值的增大而減小?
[師]請大家先自己填表,畫(huà)圖象,思考每一個(gè)問(wèn)題,然后互相討論,總結.
[生](1)第二行從左到右依次填:27.12,3,0,3, 12,27,48;第三行從左到右依次填48,27,12,3,0,3, 12,27.
(2)用描點(diǎn)法作出y=3(x-1)2的圖象,如上圖.
(3)二次函數)y=3(x-1)2的圖象與y=3x2的圖象形狀相同,開(kāi)口方向也相同,但對稱(chēng)軸和頂點(diǎn)坐標不同,y=3(x-1)2的圖象的對稱(chēng)軸是直線(xiàn)x=1,頂點(diǎn)坐標是(1,0).
(4)當x1時(shí),函數y=3(x-1)2的值隨x值的增大而增大,x1時(shí),y=3(x-1)2的值隨x值的增大而減小.
[師]能否用移動(dòng)的觀(guān)點(diǎn)說(shuō)明函數y=3x2與y=3(x-1)2的圖象之間的關(guān)系呢?
[生]y=3(x-1)2的圖象可以看成是函數)y=3x2的圖象整體向右平移得到的.
[師]能像上節課那樣比較它們圖象的性質(zhì)嗎?
[生]相同點(diǎn):
a.圖象都中拋物線(xiàn),且形狀相同,開(kāi)口方向相同.
b. 都是軸對稱(chēng)圖形.
c.都有最小值,最小值都為0.
d.在對稱(chēng)軸左側,y都隨x的增大而減小.在對稱(chēng)軸右側,y都隨x的增大而增大.
不同點(diǎn):
a.對稱(chēng)軸不同,y=3x2的對稱(chēng)軸是y軸y=3(x-1)2的對稱(chēng)軸是x=1.
b. 它們的位置不問(wèn).[來(lái)源:Www.zk5u.com]
c. 它們的頂點(diǎn)坐標不同. y=3x2的頂點(diǎn)坐標為(0,0),y=3(x-1)2的頂點(diǎn)坐標為(1,0),
聯(lián)系:
把函數y=3x2的圖象向右移動(dòng)一個(gè)單位,則得到函數y=3(x-1)2的圖像.
二、做一做
投影片:(2.4.1 B)
在同一直角坐標系中作出函數y=3(x-1)2和y=3(x-1)2+2的圖象.并比較它們圖象的性質(zhì).
[生]圖象如下
它們的圖象的性質(zhì)比較如下:
相同點(diǎn):
a.圖象都是拋物線(xiàn),且形狀相同,開(kāi)口方向相同.
b. 都足軸對稱(chēng)圖形,對稱(chēng)軸都為x=1.
c. 在對稱(chēng)軸左側,y都隨x的增大而減小,在對稱(chēng)軸右側,y都隨x的增大而增大.
不同點(diǎn):
a.它們的頂點(diǎn)不同,最值也不同.y=3(x-1)2的頂點(diǎn)坐標為(1.0),最小值為0.y=3(x-1)2+2的頂點(diǎn)坐標為(1,2),最小值為2.
b. 它們的位置不同.
聯(lián)系:
把函數y=3(x-1)2的圖象向上平移2個(gè)單位,就得到了函數y=3(x-1)2+2的圖象.
三、總結函數y=3x2,y=3(x-1)2,y=3(x-1)2+2的圖象之間的關(guān)系.
[師]通過(guò)上畫(huà)的討論,大家能夠總結出這三種函數圖象之間的關(guān)系嗎?
[生]可以.
二次函數y=3x2,y=3(x-1)2,y=3(x-1)2+2的圖象都是拋物線(xiàn).并且形狀相同,開(kāi)口方向相同,只是位置不同,頂點(diǎn)不同,對稱(chēng)軸不同,將函數y=3x2的圖象向右平移1個(gè)單位,就得到函數y=3(x-1)2的圖象;再向上平移2個(gè)單位,就得到函數y=3(x-1)2+2的圖象.
[師]大家還記得y=3x2與y=3x2-1的圖象之間的關(guān)系嗎?
[生]記得,把函數y=3x2向下平移1個(gè)平位,就得到函數y=3x2-1的圖象.
[師]你能系統總結一下嗎?
[生]將函數y=3x2的圖象向下移動(dòng)1個(gè)單位,就得到了函數y=3x2-1的圖象,向上移動(dòng)1個(gè)單位,就得到函數y=3x2+1的圖象;將y=3x2的圖象向右平移動(dòng)1個(gè)單位,就得到函數y=3(x-1)2的圖象:向左移動(dòng)1個(gè)單位,就得到函數y=3(x+1)2的圖象;由函數y=3x2向右平移1個(gè)單位、再向上平移2個(gè)單位,就得到函數y=3(x-1)2+2的圖象.
[師]下面我們就一般形式來(lái)進(jìn)行總結.
投影片:(2.4.1 C)
一般地,平移二次函數y=ax2的圖象便可得到二次函數為y=ax2+c,y=a(x-h)2,y=a(x-h)2+k的圖象.
(1)將y=ax2的圖象上下移動(dòng)便可得到函數y=ax2+c的圖象,當c0時(shí),向上移動(dòng),當c0時(shí),向下移動(dòng).
(2)將函數y=ax2的圖象左右移動(dòng)便可得到函數y=a(x-h)2的圖象,當h0時(shí),向右移動(dòng),當h0時(shí),向左移動(dòng).
(3)將函數y=ax2的圖象既上下移,又左右移,便可得到函數y=a(x-h)+k的圖象.
因此,這些函數的圖象都是一條拋物線(xiàn),它們的開(kāi)口方向,對稱(chēng)軸和頂點(diǎn)坐標與a,h,k的值有關(guān).
下面大家經(jīng)過(guò)討論之后,填寫(xiě)下表:
y=a(x-h)2+k 開(kāi)口方向 對稱(chēng)軸 頂點(diǎn)坐標
a0
a0
四、議一議
投影片:(2,4.1 D)
(1)二次函數y=3(x+1)2的圖象與二次函數y=3x2的圖象有什么關(guān)系?它是軸對稱(chēng)圖形嗎?它的對稱(chēng)軸和頂點(diǎn)坐標分別是什么?
(2)二次函數y=-3(x-2)2+4的圖象與二次函數y=-3x2的圖象有什么關(guān)系?它是軸對稱(chēng)圖形嗎?它的對稱(chēng)軸和頂點(diǎn)坐標分別是什么?
(3)對于二次函數y=3(x+1)2,當x取哪些值時(shí),y的值隨x值的增大而增大?當x取哪些值時(shí),y的值隨x值的增大而減小?二次函數y=3(x+1)2+4呢?
[師]在不畫(huà)圖象的情況下,你能回答上面的問(wèn)題嗎?
[生](1)二次函數y=3(x+1)2的圖象與y=3x2的圖象形狀相同,開(kāi)口方向也相同,但對稱(chēng)軸和頂點(diǎn)坐標不同,y=3(x+1)2的圖象的對稱(chēng)軸是直線(xiàn)x=-1,頂點(diǎn)坐標是(-1,0).只要將y=3x2的圖象向左平移1個(gè)單位,就可以得到y=3(x+1)2的圖象.
(2)二次函數y=-3(x-2)2+4的圖象與y=-3x2的圖象形狀相同,只是位置不同,將函數y=-3x2的圖象向右平移2個(gè)單位,就得到y=-3(x-2)2的圖象,再向上平移4個(gè)單位,就得到y=-3(x-2)2+4的圖象y=-3(x-2)2+4的圖象的對稱(chēng)軸是直線(xiàn)x=2,頂點(diǎn)坐標是(2,4).
(3)對于二次函數y=3(x+1)2和y=3(x+1)2+4,它們的對稱(chēng)軸都是x=-1,當x-1時(shí),y的值隨x值的增大而減小;當x-1時(shí),y的值隨x值的增大而增大.
、.課堂練習
隨堂練習
、.課時(shí)小結
本節課進(jìn)一步探究了函數y=3x2與y=3(x-1)2,y=3(x-1)2+2的圖象有什么關(guān)系,對稱(chēng)軸和頂點(diǎn)坐標分別是什么這些問(wèn)題.并作了歸納總結.還能利用這個(gè)結果對其他的函數圖象進(jìn)行討論.
、.課后作業(yè)
習題2.4
、.活動(dòng)與探究
二次函數y= (x+2)2-1與y= (x-1)2+2的圖象是由函數y= x2的圖象怎樣移動(dòng)得到的?它們之間是通過(guò)怎樣移動(dòng)得到的?
解:y= (x+2)2-1的圖象是由y= x2的圖象向左平移2個(gè)單位,再向下平移1個(gè)單位得到的,y= (x-1)2+2的圖象是由y= x2的圖象向右平移1個(gè)單位,再向上平移2個(gè)單位得到的.
y= (x+2)2-1的圖象向右平移3個(gè)單位,再向上平移3個(gè)單位得到y= (x-1)2+2的圖象.
y= (x-1)2+2的圖象向左平移3個(gè)單位,再向下平移3個(gè)單位得到y= (x+2)2-1的圖象.
板書(shū)設計
4.2.1 二次函數y=ax2+bx+c的圖象(一) 一、1. 比較函數y=3x2與y=3(x-1)2的
圖象和性質(zhì)(投影片2.4.1 A)
2.做一做(投影片2.4.1 B)
3.總結函數y=3x2,y=3(x-1)2y= 3(x-1)2+2的圖象之間的關(guān)系(投影片2.4.1 C)
4.議一議(投影片2.4.1 D)
二、課堂練習
1.隨堂練習
2.補充練習
三、課時(shí)小結
四、課后作業(yè)
備課資料
參考練習
在同一直角坐標系內作出函數y=- x2,y=- x2-1,y=- (x+1)2-1的圖象,并討論它們的性質(zhì)與位置關(guān)系.
解:圖象略
它們都是拋物線(xiàn),且開(kāi)口方向都向下;對稱(chēng)軸分別為y軸y軸,直線(xiàn)x=-1;頂點(diǎn)坐標分別為(0,0),(0,-1),(-1,-1).
y=- x2的圖象向下移動(dòng)1個(gè)單位得到y=- x2-1 的圖象;y=- x2的圖象向左移動(dòng)1個(gè)單位,向下移動(dòng)1個(gè)單位,得到y=- (x+1)2-1的圖象.
《二次函數》教案9
教學(xué)目標:
會(huì )用待定系數法求二次函數的解析式,能結合二次函數的圖象掌握二次函數的性質(zhì),能較熟練地利用函數的性質(zhì)解決函數與圓、三角形、四邊形以及方程等知識相結合的綜合題。
重點(diǎn)難點(diǎn):
重點(diǎn);用待定系數法求函數的解析式、運用配方法確定二次函數的特征。
難點(diǎn):會(huì )運用二次函數知識解決有關(guān)綜合問(wèn)題。
教學(xué)過(guò)程:
一、例題精析,強化練習,剖析知識點(diǎn)
用待定系數法確定二次函數解析式.
例:根據下列條件,求出二次函數的解析式。
。1)拋物線(xiàn)y=ax2+bx+c經(jīng)過(guò)點(diǎn)(0,1),(1,3),(-1,1)三點(diǎn)。
。2)拋物線(xiàn)頂點(diǎn)P(-1,-8),且過(guò)點(diǎn)A(0,-6)。
。3)已知二次函數y=ax2+bx+c的圖象過(guò)(3,0),(2,-3)兩點(diǎn),并且以x=1為對稱(chēng)軸。
。4)已知二次函數y=ax2+bx+c的圖象經(jīng)過(guò)一次函數y=-3/2x+3的圖象與x軸、y軸的交點(diǎn);且過(guò)(1,1),求這個(gè)二次函數解析式,并把它化為y=a(x-h(huán))2+k的形式。
學(xué)生活動(dòng):學(xué)生小組討論,題目中的四個(gè)小題應選擇什么樣的函數解析式?并讓學(xué)生闡述解題方法。
教師歸納:二次函數解析式常用的有三種形式:(1)一般式:y=ax2+bx+c(a≠0)
。2)頂點(diǎn)式:y=a(x-h(huán))2+k(a≠0)(3)兩根式:y=a(x-x1)(x-x2)(a≠0)
當已知拋物線(xiàn)上任意三點(diǎn)時(shí),通常設為一般式y=ax2+bx+c形式。
當已知拋物線(xiàn)的頂點(diǎn)與拋物線(xiàn)上另一點(diǎn)時(shí),通常設為頂點(diǎn)式y=a(x-h(huán))2+k形式。
當已知拋物線(xiàn)與x軸的交點(diǎn)或交點(diǎn)橫坐標時(shí),通常設為兩根式y=a(x-x1)(x-x2)
強化練習:已知二次函數的圖象過(guò)點(diǎn)A(1,0)和B(2,1),且與y軸交點(diǎn)縱坐標為m。
。1)若m為定值,求此二次函數的解析式;
。2)若二次函數的圖象與x軸還有異于點(diǎn)A的另一個(gè)交點(diǎn),求m的取值范圍。
二、知識點(diǎn)串聯(lián),綜合應用
例:如圖,拋物線(xiàn)y=ax2+bx+c過(guò)點(diǎn)A(-1,0),且經(jīng)過(guò)直線(xiàn)y=x-3與坐標軸的兩個(gè)交
《二次函數》教案10
教學(xué)目標
(一)教學(xué)知識點(diǎn)
1.能夠利用二次函數的圖象求一元二次方程的近似根.
2.進(jìn)一步發(fā)展估算能力.
(二)能力訓練要求
1.經(jīng)歷用圖象法求一元二次方程的近似根的過(guò)程,獲得用圖象法求方程近似根的體驗.
2.利用圖象法求一元二次方程的近似根,重要的是讓學(xué)生懂得這種求解方程的思路,體驗數形結合思想.
(三)情感與價(jià)值觀(guān)要求
通過(guò)利用二次函數的圖象估計一元二次方程的根,進(jìn)一步掌握二次函數圖象與x軸的交點(diǎn)坐標和一元二次方程的根的關(guān)系,提高估算能力.
教學(xué)重點(diǎn)
1.經(jīng)歷探索二次函數與一元二次方程的關(guān)系的過(guò)程,體會(huì )方程與函數之間的聯(lián)系.
2.能夠利用二次函數的圖象求一元二次方程的近似根.
教學(xué)難點(diǎn)
利用二次函數的圖象求一元二次方程的近似根.
教學(xué)方法
學(xué)生合作交流學(xué)習法.
教具準備
投影片三張
第一張:(記作§2.8.2A)
第二張:(記作§2.8.2B)
第三張:(記作§2.8.2C)
教學(xué)過(guò)程
、.創(chuàng )設問(wèn)題情境,引入新課
[師]上節課我們學(xué)習了二次函數y=ax2+bx+c(a≠0)的圖象與x軸的交點(diǎn)坐標和一元二次方程ax2+bx+c=0(a≠0)的根的關(guān)系,懂得了二次函數圖象與x軸交點(diǎn)的橫坐標,就是y=0時(shí)的一元二次方程的根,于是,我們在不解方程的情況下,只要知道二次函數與x軸交點(diǎn)的橫坐標即可.但是在圖象上我們很難準確地求出方程的解,所以要進(jìn)行估算.本節課我們將學(xué)習利用二次函數的圖象估計一元二次方程的根.
《二次函數》教案11
教學(xué)目標:
1、經(jīng)歷描點(diǎn)法畫(huà)函數圖像的過(guò)程;
2、學(xué)會(huì )觀(guān)察、歸納、概括函數圖像的特征;
3、掌握 型二次函數圖像的特征;
4、經(jīng)歷從特殊到一般的認識過(guò)程,學(xué)會(huì )合情推理。
教學(xué)重點(diǎn):
型二次函數圖像的描繪和圖像特征的歸納
教學(xué)難點(diǎn):
選擇適當的自變量的值和相應的函數值來(lái)畫(huà)函數圖像,該過(guò)程較為復雜。
教學(xué)設計:
一、回顧知識
前面我們在學(xué)習正比例函數、一次函數和反比例函數時(shí)時(shí)如何進(jìn)一步研究這些函數的? 先(用描點(diǎn)法畫(huà)出函數的圖像,再結合圖像研究性質(zhì)。)
引入:我們仿照前面研究函數的方法來(lái)研究二次函數,先從最特殊的形式即 入手。因此本節課要討論二次函數 ( )的圖像。
板書(shū)課題:二次函數 ( )圖像
二、探索圖像
1、 用描點(diǎn)法畫(huà)出二次函數 和 圖像
。1) 列表
引導學(xué)生觀(guān)察上表,思考一下問(wèn)題:
、贌o(wú)論x取何值,對于 來(lái)說(shuō),y的值有什么特征?對于 來(lái)說(shuō),又有什么特征?
、诋攛取 等互為相反數時(shí),對應的y的值有什么特征?
。2) 描點(diǎn)(邊描點(diǎn),邊總結點(diǎn)的位置特征,與上表中觀(guān)察的結果聯(lián)系起來(lái)).
。3) 連線(xiàn),用平滑曲線(xiàn)按照x由小到大的順序連接起來(lái),從而分別得到 和 的圖像。
2、 練習:在同一直角坐標系中畫(huà)出二次函數 和 的圖像。
學(xué)生畫(huà)圖像,教師巡視并輔導學(xué)困生。(利用實(shí)物投影儀進(jìn)行講評)
3、二次函數 ( )的圖像
由上面的四個(gè)函數圖像概括出:
。1) 二次函數的 圖像形如物體拋射時(shí)所經(jīng)過(guò)的路線(xiàn),我們把它叫做拋物線(xiàn),
。2) 這條拋物線(xiàn)關(guān)于y軸對稱(chēng),y軸就是拋物線(xiàn)的對稱(chēng)軸。
。3) 對稱(chēng)軸與拋物線(xiàn)的交點(diǎn)叫做拋物線(xiàn)的頂點(diǎn)。注意:頂點(diǎn)不是與y軸的交點(diǎn)。
。4) 當 時(shí),拋物線(xiàn)的開(kāi)口向上,頂點(diǎn)是拋物線(xiàn)上的最低點(diǎn),圖像在x軸的上方(除頂點(diǎn)外);當 時(shí),拋物線(xiàn)的開(kāi)口向下,頂點(diǎn)是拋物線(xiàn)上的最高點(diǎn)圖像在x軸的 下方(除頂點(diǎn)外)。
。ㄗ詈檬怯脦缀萎(huà)板演示,讓學(xué)生加深理解與記憶)
三、課堂練習
觀(guān)察二次函數 和 的圖像
(1) 填空:
拋物線(xiàn)
頂點(diǎn)坐標
對稱(chēng)軸
位 置
開(kāi)口方向
(2)在同一坐標系內,拋物線(xiàn) 和拋物線(xiàn) 的位置有什么關(guān)系?如果在同一個(gè)坐標系內畫(huà)二次函數 和 的圖像怎樣畫(huà)更簡(jiǎn)便?
(拋物線(xiàn) 與拋物線(xiàn) 關(guān)于x軸對稱(chēng),只要畫(huà)出 與 中的一條拋物線(xiàn),另一條可利用關(guān)于x軸對稱(chēng)來(lái)畫(huà))
四、例題講解
例題:已知二次函數 ( )的圖像經(jīng)過(guò)點(diǎn)(-2,-3)。
。1) 求a 的值,并寫(xiě)出這個(gè)二次函數的解析式。
。2) 說(shuō)出這個(gè)二次函數圖像的頂點(diǎn)坐標、對稱(chēng)軸、開(kāi)口方向和圖像的位置。
練習:(1)課本第31頁(yè)課內練習第2題。
(2) 已知拋物線(xiàn)y=ax2經(jīng)過(guò)點(diǎn)a(-2,-8)。
。1)求此拋物線(xiàn)的函數解析式;
。2)判斷點(diǎn)b(-1,- 4)是否在此拋物線(xiàn)上。
《二次函數》教案12
一.學(xué)習目標
1.經(jīng)歷對實(shí)際問(wèn)題情境分析確定二次函數表達式的過(guò)程,體會(huì )二次函數意義。
2.了解二次函數關(guān)系式,會(huì )確定二次函數關(guān)系式中各項的系數。
二.知識導學(xué)
。ㄒ唬┣榫皩W(xué)
1.一粒石子投入水中,激起的波紋不斷向外擴展,擴大的圓的面積S與半徑r之間的函數關(guān)系式是 。
2.用16米長(cháng)的籬笆圍成長(cháng)方形的生物園飼養小兔,怎樣圍可使小兔的活動(dòng)范圍較大?
設長(cháng)方形的長(cháng)為x 米,則寬為 米,如果將面積記為y平方米,那么變量y與x之間的函數關(guān)系式為 .
3.要給邊長(cháng)為x米的正方形房間鋪設地板,已知某種地板的價(jià)格為每平方米240元,踢腳線(xiàn)的價(jià)格為每米30元,如果其他費用為1000元,門(mén)寬0.8米,那么總費用y為多少元?
在這個(gè)問(wèn)題中,地板的費用與 有關(guān),為 元,踢腳線(xiàn)的費用與 有關(guān),為 元;其他費用固定不變?yōu)?元,所以總費用y(元)與x(m)之間的函數關(guān)系式是 。
。ǘw納提高。
上述函數函數關(guān)系有哪些共同之處?它們與一次函數、反比例函數的關(guān)系式有什么不同?
一般地,我們稱(chēng) 表示的函數為二次函數。其中 是自變量, 函數。
一般地,二次函數 中自變量x的取值范圍是 ,你能說(shuō)出上述三個(gè)問(wèn)題中自變量的取值范圍嗎?
。ㄈ┑淅治
例1、判斷:下列函數是否為二次函數,如果是,指出其中常數a.b.c的值.
(1) y=1— (2)y=x(x-5) (3)y= - x+1 (4) y=3x(2-x)+ 3x2
(5)y= (6) y= (7)y= x4+2x2-1 (8)y=ax2+bx+c
例2.當k為何值時(shí),函數 為二次函數?
例3.寫(xiě)出下列各函數關(guān)系,并判斷它們是什么類(lèi)型的函數.
、耪襟w的表面積S(cm2)與棱長(cháng)a(cm)之間的函數關(guān)系;
、茍A的面積y(cm2)與它的周長(cháng)x(cm)之間的函數關(guān)系;
、悄撤N儲蓄的年利率是1.98%,存入10000元本金,若不計利息,求本息和y(元)與所存年數x之間的函數關(guān)系;
、攘庑蔚膬蓷l對角線(xiàn)的和為26cm,求菱形的面積S(cm2)與一對角線(xiàn)長(cháng)x(cm)之間的函數關(guān)系.
三.鞏固拓展
1.已知函數 是二次函數,求m的值.
2. 已知二次函數 ,當x=3時(shí),y= -5,當x= -5時(shí),求y的值.
3.一個(gè)長(cháng)方形的長(cháng)是寬的1.6倍,寫(xiě)出這個(gè)長(cháng)方形的面積S與寬x之間函數關(guān)系式。
4.一個(gè)圓柱的高與底面直徑相等,試寫(xiě)出它的表面積S與底面半徑r之間的函數關(guān)系式
5.用一根長(cháng)為40 cm的鐵絲圍成一個(gè)半徑為r的扇形,求扇形的面積y與它的半徑x之間的函數關(guān)系式.這個(gè)函數是二次函數嗎?請寫(xiě)出半徑r的取值范圍.
6. 一條隧道的截面如圖所示,它的上部是一個(gè)半圓,下部是一個(gè)矩形,矩形的一邊長(cháng)2.5 m.
、徘笏淼澜孛娴拿娣eS(m2)關(guān)于上部半圓半徑r(m)的函數關(guān)系式;
、魄螽斏喜堪雸A半徑為2 m時(shí)的截面面積.(π取3.14,結果精確到0.1 m2)
課堂練習:
1.判斷下列函數是否是二次函數,若是,請指出它的二次項系數、一次項系數、常數項。
。1)y=2-3x2; (2)y=x2+2x3; (3)y= ; (4)y= .
2.寫(xiě)出多項式的對角線(xiàn)的條數d與邊數n之間的函數關(guān)系式。
3.某產(chǎn)品年產(chǎn)量為30臺,計劃今后每年比上一年的產(chǎn)量增長(cháng)x%,試寫(xiě)出兩年后的產(chǎn)量y(臺)與x的函數關(guān)系式。
4.圓柱的高h(cm)是常量,寫(xiě)出圓柱的體積v(cm3)與底面周長(cháng)C(cm)之間的函數關(guān)系式。
課外作業(yè):
A級:
1.下列函數:(1)y=3x2+ +1;(2)y= x2+5;(3)y=(x-3)2-x2;(4)y=1+x- ,屬于二次函數的
是 (填序號).
2.函數y=(a-b)x2+ax+b是二次函數的條件為 .
3.下列函數關(guān)系中,滿(mǎn)足二次函數關(guān)系的是( )
A.圓的周長(cháng)與圓的半徑之間的關(guān)系; B.在彈性限度內,彈簧的長(cháng)度與所掛物體質(zhì)量的關(guān)系;
C.圓柱的高一定時(shí),圓柱的體積與底面半徑的關(guān)系;
D.距離一定時(shí),汽車(chē)行駛的速度與時(shí)間之間的關(guān)系.
4.某超市1月份的營(yíng)業(yè)額為200萬(wàn)元,2、3月份營(yíng)業(yè)額的月平均增長(cháng)率為x,求第一季度營(yíng)業(yè)額y(萬(wàn)元)與x的函數關(guān)系式.
B級:
5、一塊直角三角尺的形狀與尺寸如圖,若圓孔的半徑為 ,三角尺的厚度為16,求這塊三角尺的體積V與n的函數關(guān)系式.
6.某地區原有20個(gè)養殖場(chǎng),平均每個(gè)養殖場(chǎng)養奶牛20xx頭。后來(lái)由于市場(chǎng)原因,決定減少養殖場(chǎng)的數量,當養殖場(chǎng)每減少1個(gè)時(shí),平均每個(gè)養殖場(chǎng)的奶牛數將增加300頭。如果養殖場(chǎng)減少x個(gè),求該地區奶?倲祔(頭)與x(個(gè))之間的函數關(guān)系式。
C級:
7.圓的半徑為2cm,假設半徑增加xcm 時(shí),圓的面積增加到y(cm2).
(1)寫(xiě)出y與x之間的函數關(guān)系式;
。2)當圓的半徑分別增加1cm、 時(shí),圓的面積分別增加多少?
。3)當圓的面積為5πcm2時(shí),其半徑增加了多少?
8.已知y+2x2=kx(x-3)(k≠2).
(1)證明y是x的二次函數;
(2)當k=-2時(shí),寫(xiě)出y與x的函數關(guān)系式。
《二次函數》教案13
〖大綱要求〗
1. 理解二次函數的概念;
2. 會(huì )把二次函數的一般式化為頂點(diǎn)式,確定圖象的頂點(diǎn)坐標、對稱(chēng)軸和開(kāi)口方向,會(huì )用描點(diǎn)法畫(huà)二次函數的圖象;
3. 會(huì )平移二次函數y=ax2(a≠0)的圖象得到二次函數y=a(ax+m)2+k的圖象,了解特殊與一般相互聯(lián)系和轉化的思想;
4. 會(huì )用待定系數法求二次函數的解析式;
5. 利用二次函數的圖象,了解二次函數的增減性,會(huì )求二次函數的圖象與x軸的交點(diǎn)坐標和函數的最大值、最小值,了解二次函數與一元二次方程和不等式之間的聯(lián)系,數學(xué)教案-二次函數。
內容
。1)二次函數及其圖象
如果y=ax2+bx+c(a,b,c是常數,a≠0),那么,y叫做x的二次函數。
二次函數的圖象是拋物線(xiàn),可用描點(diǎn)法畫(huà)出二次函數的圖象。
。2)拋物線(xiàn)的頂點(diǎn)、對稱(chēng)軸和開(kāi)口方向
拋物線(xiàn)y=ax2+bx+c(a≠0)的頂點(diǎn)是 (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限
20.某幢建筑物,從10米高的窗口A(yíng)用水管和向外噴水,噴的水流呈拋物線(xiàn)(拋物線(xiàn)所在平面與墻面垂直,(如圖)如果拋物線(xiàn)的最高點(diǎn)M離墻1米,離地面米,則水流下落點(diǎn)B離墻距離OB是( )
。ˋ)2米 (B)3米 (C)4米 (D)5米
三.解答下列各題(21題6分,22----25每題4分,26-----28每題6分,共40分)
21.已知:直線(xiàn)y=x+k過(guò)點(diǎn)A(4,-3)。(1)求k的值;(2)判斷點(diǎn)B(-2,-6)是否在這條直線(xiàn)上;(3)指出這條直線(xiàn)不過(guò)哪個(gè)象限。
22.已知拋物線(xiàn)經(jīng)過(guò)A(0,3),B(4,6)兩點(diǎn),對稱(chēng)軸為x=,
。1) 求這條拋物線(xiàn)的解析式;
。2) 試證明這條拋物線(xiàn)與X軸的兩個(gè)交點(diǎn)中,必有一點(diǎn)C,使得對于x軸上任意一點(diǎn)D都有AC+BC≤AD+BD。
23.已知:金屬棒的長(cháng)1是溫度t的一次函數,現有一根金屬棒,在O℃時(shí)長(cháng)度為200cm,溫度提高1℃,它就伸長(cháng)0.002cm。
。1) 求這根金屬棒長(cháng)度l與溫度t的函數關(guān)系式;
。2) 當溫度為100℃時(shí),求這根金屬棒的長(cháng)度;
。3) 當這根金屬棒加熱后長(cháng)度伸長(cháng)到201.6cm時(shí),求這時(shí)金屬棒的溫度。
24.已知x1,x2,是關(guān)于x的方程x2-3x+m=0的兩個(gè)不同的實(shí)數根,設s=x12+x22
。1) 求S關(guān)于m的解析式;并求m的取值范圍;
。2) 當函數值s=7時(shí),求x13+8x2的值;
25.已知拋物線(xiàn)y=x2-(a+2)x+9頂點(diǎn)在坐標軸上,求a的值。
。玻、如圖,在直角梯形ABCD中,∠A=∠D=Rt∠,截。粒牛剑拢疲剑模牵剑,已知AB=6,CD=3,AD=4,求:
。ǎ保 四邊形CGEF的面積S關(guān)于x的函數表達式和X的取值范圍;
。ǎ玻 當x為何值時(shí),S的數值是x的4倍。
。玻、國家對某種產(chǎn)品的稅收標準原定每銷(xiāo)售100元需繳稅8元(即稅率為8%),臺洲經(jīng)濟開(kāi)發(fā)區某工廠(chǎng)計劃銷(xiāo)售這種產(chǎn)品m噸,每噸2000元。國家為了減輕工人負擔,將稅收調整為每100元繳稅(8-x)元(即稅率為(8-x)%),這樣工廠(chǎng)擴大了生產(chǎn),實(shí)際銷(xiāo)售比原計劃增加2x%。
。ǎ保 寫(xiě)出調整后稅款y(元)與x的函數關(guān)系式,指出x的取值范圍;
。ǎ玻 要使調整后稅款等于原計劃稅款(銷(xiāo)售m噸,稅率為8%)的78%,求x的值.
。玻、已知拋物線(xiàn)y=x2+(2-m)x-2m(m≠2)與y軸的交點(diǎn)為A,與x軸的交點(diǎn)為B,C(B點(diǎn)在C點(diǎn)左邊)
。ǎ保 寫(xiě)出A,B,C三點(diǎn)的坐標;
。ǎ玻 設m=a2-2a+4試問(wèn)是否存在實(shí)數a,使△ABC為Rt△?若存在,求出a的值,若不存在,請說(shuō)明理由;
。ǎ常 設m=a2-2a+4,當∠BAC最大時(shí),求實(shí)數a的值。
習題2:
一.填空(20分)
1.二次函數=2(x - )2 +1圖象的對稱(chēng)軸是 。
2.函數y= 的自變量的取值范圍是 。
3.若一次函數y=(m-3)x+m+1的圖象過(guò)一、二、四象限,則的取值范圍是 。
4.已知關(guān)于的二次函數圖象頂點(diǎn)(1,-1),且圖象過(guò)點(diǎn)(0,-3),則這個(gè)二次函數解析式為 。
5.若y與x2成反比例,位于第四象限的一點(diǎn)P(a,b)在這個(gè)函數圖象上,且a,b是方程x2-x -12=0的兩根,則這個(gè)函數的關(guān)系式 。
6.已知點(diǎn)P(1,a)在反比例函數y= (k≠0)的圖象上,其中a=m2+2m+3(m為實(shí)數),則這個(gè)函數圖象在第 象限。
7. x,y滿(mǎn)足等式x= ,把y寫(xiě)成x的函數 ,其中自變量x的取值范圍是 。
8.二次函數y=ax2+bx+c+(a 0)的圖象如圖,則點(diǎn)P(2a-3,b+2)
在坐標系中位于第 象限
9.二次函數y=(x-1)2+(x-3)2,當x= 時(shí),達到最小值 。
10.拋物線(xiàn)y=x2-(2m-1)x- 6m與x軸交于(x1,0)和(x2,0)兩點(diǎn),已知x1x2=x1+x2+49,要使拋物線(xiàn)經(jīng)過(guò)原點(diǎn),應將它向右平移 個(gè)單位。
二.選擇題(30分)
11.拋物線(xiàn)y=x2+6x+8與y軸交點(diǎn)坐標( )
。ˋ)(0,8) (B)(0,-8) (C)(0,6) (D)(-2,0)(-4,0)
12.拋物線(xiàn)y=- (x+1)2+3的頂點(diǎn)坐標( )
。ˋ)(1,3) (B)(1,-3) (C)(-1,-3) (D)(-1,3)
13.如圖,如果函數y=kx+b的圖象在第一、二、三象限,那么函數y=kx2+bx-1的圖象大致是( )
14.函數y= 的自變量x的取值范圍是( )
。ˋ)x 2 (B)x<2 x="">- 2且x 1 (D)x 2且x –1
15.把拋物線(xiàn)y=3x2先向上平移2個(gè)單位,再向右平移3個(gè)單位,所得拋物線(xiàn)的解析式是( )
。ˋ)=3(x+3)2 -2 (B)=3(x+2)2+2 (C)=3(x-3)2 -2 (D)=3(x-3)2+2
16.已知拋物線(xiàn)=x2+2mx+m -7與x軸的兩個(gè)交點(diǎn)在點(diǎn)(1,0)兩旁,則關(guān)于x的方程 x2+(m+1)x+m2+5=0的根的情況是( )
。ˋ)有兩個(gè)正根 (B)有兩個(gè)負數根 (C)有一正根和一個(gè)負根 (D)無(wú)實(shí)根
17.函數y=- x的圖象與圖象y=x+1的交點(diǎn)在( )
。ˋ) 第一象限 (B)第二象限 (C)第三象限 (D)第四象限
18.如果以y軸為對稱(chēng)軸的拋物線(xiàn)y=ax2+bx+c的圖象,如圖,
則代數式b+c-a與0的關(guān)系( )
。ˋ)b+c-a=0 (B)b+c-a>0 (C)b+c-a<0 (D)不能確定
19.已知:二直線(xiàn)y=- x +6和y=x - 2,它們與y軸所圍成的三角形的面積為( )
。ˋ)6 (B)10 (C)20 (D)12
20.某學(xué)生從家里去學(xué)校,開(kāi)始時(shí)勻速跑步前進(jìn),跑累了后,再勻速步行余下的路程,初中數學(xué)教案《數學(xué)教案-二次函數》。下圖所示圖中,橫軸表示該生從家里出發(fā)的時(shí)間t,縱軸表示離學(xué)校的路程s,則路程s與時(shí)間t之間的函數關(guān)系的圖象大致是( )
三.解答題(21~23每題5分,24~28每題7分,共50分)
21.已知拋物線(xiàn)y=ax2+bx+c(a 0)與x軸的兩交點(diǎn)的橫坐標分別是-1和3,與y軸交點(diǎn)的縱坐標是- ;
。1)確定拋物線(xiàn)的解析式;
。2)用配方法確定拋物線(xiàn)的開(kāi)口方向,對稱(chēng)軸和頂點(diǎn)坐標。
22、如圖拋物線(xiàn)與直線(xiàn) 都經(jīng)過(guò)坐標軸的正半軸上A,B兩點(diǎn),該拋物線(xiàn)的對稱(chēng)軸x=—1,與x軸交于點(diǎn)C,且∠ABC=90°求:
(1)直線(xiàn)AB的解析式;
(2)拋物線(xiàn)的解析式。
23、某商場(chǎng)銷(xiāo)售一批名脾襯衫,平均每天可售出20件,每件盈利40元,為了擴大銷(xiāo)售,增加盈利,盡快減少庫存,商場(chǎng)決定采取適當的降價(jià)措施.經(jīng)調查發(fā)現每件襯衫降價(jià)1元, 商場(chǎng)平均每天可多售出2件:
(1)若商場(chǎng)平均每天要盈利1200元,每件襯衫要降價(jià)多少元,
(2)每件襯衫降價(jià)多少元時(shí),商場(chǎng)平均每天盈利最多?
24、已知:二次函數 和 的圖象都經(jīng)過(guò)x軸上兩個(gè)不同的點(diǎn)M、N,求a、b的值。
25、如圖,已知⊿ABC是邊長(cháng)為4的正三角形,AB在x軸上,點(diǎn)C在第一象限,AC與y軸交于點(diǎn)D,點(diǎn)A的坐標為{—1,0),求
(1)B,C,D三點(diǎn)的坐標;
(2)拋物線(xiàn) 經(jīng)過(guò)B,C,D三點(diǎn),求它的解析式;
(3)過(guò)點(diǎn)D作DE∥AB交過(guò)B,C,D三點(diǎn)的拋物線(xiàn)于E,求DE的長(cháng)。
26 某市電力公司為了鼓勵居民用電,采用分段計費的方法計算電費:每月用電不超100度
時(shí),按每度0.57元計費:每月用電超過(guò)100度時(shí).其中的100度仍按原標準收費,超過(guò)部分按每度0.50元計費。
(1)設月用電x度時(shí),應交電費y元,當x≤100和x>100時(shí),分別寫(xiě)出y關(guān)于x的函數
關(guān)系式;
(1)求證;不論m取何值,拋物線(xiàn)與x軸必有兩個(gè)交點(diǎn),并且有一個(gè)交點(diǎn)是A(2,0);
(2)設拋物線(xiàn)與x軸的另一個(gè)交點(diǎn)為B,AB的長(cháng)為d,求d與m之間的函數關(guān)系式;
(3)設d=10,P(a,b)為拋物線(xiàn)上一點(diǎn):
、佼敤SABP是直角三角形時(shí),求b的值;
、诋敤SABP是銳角三角形,鈍角三角形時(shí),分別寫(xiě)出b的取值范圍(第2題不要求寫(xiě)出過(guò)程)
28、已知二次函數的圖象 與x軸的交點(diǎn)為A,B(點(diǎn)B在點(diǎn)A的右邊),與y軸的交點(diǎn)為C;
(1)若⊿ABC為Rt⊿,求m的值;
(1)在⊿ABC中,若AC=BC,求sin∠ACB的值;
(3)設⊿ABC的面積為S,求當m為何值時(shí),s有最小值.并求這個(gè)最小值。
《二次函數》教案14
一、教材分析
1.教材的地位和作用
。1)函數是初等數學(xué)中最基本的概念之一,貫穿于整個(gè)初等數學(xué)體系之中,也是實(shí)際生活中數學(xué)建模的重要工具之一,二次函數在初中函數的教學(xué)中有重要地位,它不僅是初中代數內容的引申,也是初中數學(xué)教學(xué)的重點(diǎn)和難點(diǎn)之一,更為高中學(xué)習一元二次不等式和圓錐曲線(xiàn)奠定基礎。在歷屆佛山市中考試題中,二次函數都是必不可少的內容。
。2)二次函數的圖像和性質(zhì)體現了數形結合的數學(xué)思想,對學(xué)生基本數學(xué)思想和素養的形成起推動(dòng)作用。
。3)二次函數與一元二次方程、不等式等知識的聯(lián)系,使學(xué)生能更好地將所學(xué)知識融會(huì )貫通。
2.課標要求:
、偻ㄟ^(guò)對實(shí)際問(wèn)題情境的分析確定二次函數的表達式,并體會(huì )二次函數的意義。
、跁(huì )用描點(diǎn)法畫(huà)出二次函數的圖象,能從圖象上認識二次函數的性質(zhì)。
、蹠(huì )根據公式確定圖象的頂點(diǎn)、開(kāi)口方向和對稱(chēng)軸(公式不要求記憶和推導)。
、軙(huì )根據二次函數的性質(zhì)解決簡(jiǎn)單的實(shí)際問(wèn)題。
3.學(xué)情分析:
。1)初三學(xué)生在新課的學(xué)習中已掌握二次函數的定義、圖像及性質(zhì)等基本知識。
。2)學(xué)生的分析、理解能力較學(xué)習新課時(shí)有明顯提高。
。3)學(xué)生學(xué)習數學(xué)的熱情很高,思維敏捷,具有一定的自主探究和合作學(xué)習的能力。
。4)學(xué)生能力差異較大,兩極分化明顯。
4.教學(xué)目標
◆認知目標
(1)掌握二次函數 y=圖像與系數符號之間的關(guān)系。通過(guò)復習,掌握各類(lèi)形式的二次函數解析式求解方法和思路,能夠一題多解,發(fā)散提高學(xué)生的創(chuàng )造思維能力。
◆能力目標
提高學(xué)生對知識的整合能力和分析能力。
◆ 情感目標
制作動(dòng)畫(huà)增加直觀(guān)效果,激發(fā)學(xué)生興趣,感受數學(xué)之美。在教學(xué)中滲透美的教育,滲透數形結合的思想,讓學(xué)生在數學(xué)活動(dòng)中學(xué)會(huì )感受探索與創(chuàng )造,體驗成功的喜悅。
5.教學(xué)重點(diǎn)與難點(diǎn):
重點(diǎn):(1)掌握二次函數y=圖像與系數符號之間的關(guān)系。
(2) 各類(lèi)形式的二次函數解析式的求解方法和思路。
。ǎ常┍竟澱n主要目的,對歷屆中考題中的二次函數題目進(jìn)行類(lèi)比分析,達到融會(huì )貫通的作用。
難點(diǎn):(1)已知二次函數的解析式說(shuō)出函數性質(zhì)
(2)運用數形結合思想,選用恰當的數學(xué)關(guān)系式解決幾何問(wèn)題.
二、教學(xué)方法:
1. 運用多媒體進(jìn)行輔助教學(xué),既直觀(guān)、生動(dòng)地反映圖形變換,增強教學(xué)的條理性和形象性,又豐富了課堂的內容,有利于突出重點(diǎn)、分散難點(diǎn),更好地提高課堂效率。
2.將知識點(diǎn)分類(lèi),讓學(xué)生通過(guò)這個(gè)框架結構很容易看出不同解析式表示的二次函數的內在聯(lián)系,讓學(xué)生形成一個(gè)清晰、系統、完整的知識網(wǎng)絡(luò )。
3.師生互動(dòng)探究式教學(xué),以課標為依據,滲透新的教育理念,遵循教師為主導、學(xué)生為主體的原則,結合初三學(xué)生的求知心理和已有的認知水平開(kāi)展教學(xué).形成學(xué)生自動(dòng)、生生助動(dòng)、師生互動(dòng),教師著(zhù)眼于引導,學(xué)生著(zhù)眼于探索,側重于學(xué)生能力的提高、思維的訓練。同時(shí)考慮到學(xué)生的個(gè)體差異,在教學(xué)的各個(gè)環(huán)節中進(jìn)行分層施教,讓每一個(gè)學(xué)生都能獲得知識,能力得到提高。
三、學(xué)法指導:
1.學(xué)法引導
“授人之魚(yú),不如授人之漁”在教學(xué)過(guò)程中,不但要傳授學(xué)生基本知識,還要培育學(xué)生主動(dòng)思考,親自動(dòng)手,自我發(fā)現等能力,增強學(xué)生的綜合素質(zhì),從而達到教學(xué)終極目標。
2.學(xué)法分析:新課標明確提出要培養“可持續發(fā)展的學(xué)生”,因此教師有組織、有目的、有針對性的引導學(xué)生并參入到學(xué)習活動(dòng)中,鼓勵學(xué)生采用自主學(xué)習,合作交流的研討式學(xué)習方式,培養學(xué)生“動(dòng)手”、“動(dòng)腦”、“動(dòng)口”的習慣與能力,使學(xué)生真正成為學(xué)習的主人。
3、設計理念:《課標》要求,對于課程實(shí)施和教學(xué)過(guò)程,教師在教學(xué)過(guò)程中應與學(xué)生積極互動(dòng)、共同發(fā)展,要處理好傳授知識與培養能力的關(guān)系,關(guān)注個(gè)體差異,滿(mǎn)足不同學(xué)生的學(xué)習需要.”
4、設計思路:不把復習課簡(jiǎn)單地看作知識點(diǎn)的復習和習題的訓練,而是通過(guò)復習舊知識,拓展學(xué)生思維,提高學(xué)生學(xué)習能力,增強學(xué)生分析問(wèn)題,解決問(wèn)題的能力。
四、教學(xué)過(guò)程:
1、教學(xué)環(huán)節設計:
根據教材的結構特點(diǎn),緊緊抓住新舊知識的內在聯(lián)系,運用類(lèi)比、聯(lián)想、轉化的思想,突破難點(diǎn).
本節課的教學(xué)設計環(huán)節:
◆創(chuàng )設情境,引入新知 :復習舊知識的目的是對學(xué)生新課應具備的“認知前提能力”和“情感前提特征進(jìn)行檢測判斷”。學(xué)生自主完成,不僅體現學(xué)生的自主學(xué)習意識,調動(dòng)學(xué)生學(xué)習積極性,也能為課堂教學(xué)掃清障礙。為了更好地理解、掌握二次函數圖像與系數之間的關(guān)系,根據不同學(xué)生的學(xué)習需要,按照分層遞進(jìn)的教學(xué)原則,設計安排了6個(gè)由淺入深的題型,讓每一個(gè)學(xué)生都能為下一步的探究做好準備。
◆自主探究,合作交流:本環(huán)節通過(guò)開(kāi)放性題的設置,發(fā)散學(xué)生思維,學(xué)生對二次函數的性質(zhì)作出全面分析。讓學(xué)生在教師的引導下,獨立思考,相互交流,培養學(xué)生自主探索,合作探究的能力。通過(guò)學(xué)生觀(guān)察、思考、交流,經(jīng)歷發(fā)現過(guò)程,加深對重點(diǎn)知識的理解。
◆運用知識,體驗成功:根據不同層次的學(xué)生,同時(shí)配有兩個(gè)由低到高、層次不同的鞏固性習題,體現漸進(jìn)性原則,希望學(xué)生能將知識轉化為技能。讓每一個(gè)學(xué)生獲得成功,感受成功的喜悅。
安排三個(gè)層次的練習。
(一)從定義出發(fā)的簡(jiǎn)單題目。
(二)典型例題分析,通過(guò)反饋使學(xué)生掌握重點(diǎn)內容。
(三)綜合應用能力提高。
既培養學(xué)生運用知識的能力,又培養學(xué)生的創(chuàng )新意識。引導學(xué)生對學(xué)習內容進(jìn)行梳理,將知識系統化,條理化,網(wǎng)絡(luò )化,對在獲取新知識中體現出來(lái)的數學(xué)思想、方法、策略進(jìn)行反思,從而加深對知識的理解。并增強學(xué)生分析問(wèn)題,運用知識的能力。
(四)方法與小結
由總結、歸納、反思,加深對知識的理解,并且能熟練運用所學(xué)知識解決問(wèn)題。
2、作業(yè)設計:(見(jiàn)課件)
3、板書(shū)設計:(見(jiàn)課件)
五、評價(jià)分析:
本節課的設計,我以學(xué)生活動(dòng)為主線(xiàn),通過(guò)“觀(guān)察、分析、探索、交流”等過(guò)程,讓學(xué)生在復習中溫故而知新,在應用中獲得發(fā)展,從而使知識轉化為能力。本節教學(xué)過(guò)程主要由創(chuàng )設情境,引入新知――合作交流;探究新知――運用知識,體驗成功;知識深化――應用提高;歸納小結――形成結構等環(huán)節構成,環(huán)環(huán)相扣,緊密聯(lián)系,體現了讓學(xué)生成為行為主體即“動(dòng)手實(shí)踐、自主探索、合作交流“的《數學(xué)新課標》要求。本設計同時(shí)還注重發(fā)揮多媒體的輔助作用,使學(xué)生更好地理解數學(xué)知識;貫穿整個(gè)課堂教學(xué)的活動(dòng)設計,讓學(xué)生在活動(dòng)、合作、開(kāi)放、探究、交流中,愉悅地參與數學(xué)活動(dòng)的數學(xué)教學(xué)。
《二次函數》教案15
一、由實(shí)際問(wèn)題探索二次函數
某果園有100棵橙子樹(shù),每一棵樹(shù)平均結600個(gè)橙子,現準備多種一些橙子樹(shù)以提高產(chǎn)量,但是如果多種樹(shù),那么樹(shù)之間的距離和每一棵樹(shù)所接受的陽(yáng)光就會(huì )減少.根據經(jīng)驗估計,每多種一棵樹(shù),平均每棵樹(shù)就會(huì )少結5個(gè)橙子.
(1) 問(wèn)題中有哪些變量?其中哪些是自變量?哪些因變量
(2)假設果園增種x棵橙子樹(shù),那么果園共有多少棵橙子樹(shù)?這時(shí)平均每棵樹(shù)結多少個(gè)橙子?
(3)如果果園橙子的總產(chǎn)量為y個(gè),那么請你寫(xiě)出y與x之間的關(guān)系式.
果園共有(100+x)棵樹(shù),平均每棵樹(shù)結(600-5x)個(gè)橙子,因此果園橙子的總產(chǎn) 量
y=(100+z)(6005x)=-5x2+100x+ 60000.
二、想一想
在上述問(wèn)題中,種多少棵橙子樹(shù),可以使果園橙子的產(chǎn)量最多?
我們可以列表 表示橙子的總產(chǎn)量隨橙子樹(shù)的增加而變化情況.你能根據 表格中的數據作出猜測嗎 ?自己試一試.
x/棵
y/個(gè)
三.做一做
銀行的儲蓄利率是隨時(shí)間的變化而變化的。也就是說(shuō),利率是一個(gè)變量.在我國利率的調整是由中國人民銀行根據國民經(jīng)濟發(fā)展的情況而決定的.設人民幣一年定期儲蓄的年利率是x,一年到期后,銀行將本金和利 息自動(dòng)按一年定期儲蓄轉存. 如 果存款額是100元,那么請你寫(xiě)出兩年后的本息和y(元)的表 達式(不考慮利息稅).
四、二次函數的定義
一般地,形如y=ax2+bx+c(a,b,c是常數,a0)的函數叫做x的二次函數(quadratic function)
注意:定義中只要求二次項系數不為零,一次項系數、常數項可以為 零。
例如,y=一5x2+100x+60000和y=100x2+200x+100都是二次函數.我們以前學(xué)過(guò)的正方形面積A與邊長(cháng)a的關(guān)系A=a2, 圓面積s與半徑r的 關(guān)系s=Try2等也都是二次函數的例子.
隨堂練習
1.下列函數中(x,t是自變量),哪些是二次 函數?
y=- +3x.y= x-x+25,y=2 + 2x,s=1+t+5t
2.圓的半徑是l㎝,假設半徑增加x㎝時(shí),圓的面積增加y㎝.
(1)寫(xiě)出y與x之間的關(guān)系表達式;
(2)當圓的半徑分別增加lcm、 ㎝、2㎝時(shí),圓的面積增加多少?
五、課時(shí)小結
1. 經(jīng)歷探索和表 示二次函數關(guān)系的過(guò)程,猜想并歸納二次函數的定義及一般形式。
2.用嘗試求值的方法解決種多少棵橙子樹(shù),可以使果園橙子的總產(chǎn)量最多。
六、活動(dòng)與探究
若 是二次函數,求m的值.
七、作業(yè)
習題2.1
1.物體從某一高度落下,已知下落的高度h(m)和下落的時(shí)間t(s)的關(guān)系是:h=4.9t , 填 表表示物體在前5s下落的高度:
t/s 1 2 3 4 5
h/m
、材彻S(chǎng)計劃為一批長(cháng)方體形狀的產(chǎn)品涂上油漆,長(cháng)方體的長(cháng)和寬相等,高比長(cháng)多0.5m。
(1)長(cháng)方體的長(cháng)和寬用x(m)表示,長(cháng)方體需要涂漆的表面積S(㎡)如何表示?
(2) 如果涂漆每平方米所需要的費用是5元,油漆每個(gè)長(cháng)方體所需要費用用y(元)表示,那么y的表達式是什么?
【《二次函數》教案】相關(guān)文章:
二次函數超級經(jīng)典課件教案05-13
二次函數說(shuō)課稿02-17
二次函數的圖像說(shuō)課稿11-04
二次函數說(shuō)課稿(11篇)02-17
二次函數說(shuō)課稿11篇11-15
數學(xué)二次函數復習資料08-27
二次函數測試題的整理08-20
二次根式教案8篇02-21
二次根式教案九篇02-06
奇函數的反函數是奇函數嗎10-12