成人免费看黄网站无遮挡,caowo999,se94se欧美综合色,a级精品九九九大片免费看,欧美首页,波多野结衣一二三级,日韩亚洲欧美综合

高中數學(xué)基本的知識點(diǎn)總結

時(shí)間:2023-09-28 10:03:37 曉怡 知識點(diǎn)總結 我要投稿

高中數學(xué)基本的知識點(diǎn)總結

  在我們的學(xué)習時(shí)代,大家最不陌生的就是知識點(diǎn)吧!知識點(diǎn)是指某個(gè)模塊知識的重點(diǎn)、核心內容、關(guān)鍵部分。為了幫助大家更高效的學(xué)習,下面是小編為大家整理的高中數學(xué)基本的知識點(diǎn)總結,僅供參考,大家一起來(lái)看看吧。

高中數學(xué)基本的知識點(diǎn)總結

  高中數學(xué)基本的知識點(diǎn)總結 1

  空間幾何體表面積體積公式:

  1、圓柱體:表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)。

  2、圓錐體:表面積:πR2+πR[(h2+R2)的]體積:πR2h/3(r為圓錐體低圓半徑,h為其高。

  3、a—邊長(cháng),S=6a2,V=a3。

  4、長(cháng)方體a—長(cháng),b—寬,c—高S=2(ab+ac+bc)V=abc。

  5、棱柱S—h—高V=Sh。

  6、棱錐S—h—高V=Sh/3。

  7、S1和S2—上、下h—高V=h[S1+S2+(S1S2)^1/2]/3。

  8、S1—上底面積,S2—下底面積,S0—中h—高,V=h(S1+S2+4S0)/6。

  9、圓柱r—底半徑,h—高,C—底面周長(cháng)S底—底面積,S側—,S表—表面積C=2πrS底=πr2,S側=Ch,S表=Ch+2S底,V=S底h=πr2h。

  10、空心圓柱R—外圓半徑,r—內圓半徑h—高V=πh(R^2—r^2)。

  11、r—底半徑h—高V=πr^2h/3。

  12、r—上底半徑,R—下底半徑,h—高V=πh(R2+Rr+r2)/313、球r—半徑d—直徑V=4/3πr^3=πd^3/6。

  14、球缺h—球缺高,r—球半徑,a—球缺底半徑V=πh(3a2+h2)/6=πh2(3r—h)/3。

  15、球臺r1和r2—球臺上、下底半徑h—高V=πh[3(r12+r22)+h2]/6。

  16、圓環(huán)體R—環(huán)體半徑D—環(huán)體直徑r—環(huán)體截面半徑d—環(huán)體截面直徑V=2π2Rr2=π2Dd2/4。

  17、桶狀體D—桶腹直徑d—桶底直徑h—桶高V=πh(2D2+d2)/12,(母線(xiàn)是圓弧形,圓心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母線(xiàn)是拋物線(xiàn)形)。

  高中數學(xué)基本的知識點(diǎn)總結 2

  集合的分類(lèi):

 。1)按元素屬性分類(lèi),如點(diǎn)集,數集。

 。2)按元素的個(gè)數多少,分為有/無(wú)限集

  關(guān)于集合的概念:

 。1)確定性:作為一個(gè)集合的元素,必須是確定的,這就是說(shuō),不能確定的對象就不能構成集合,也就是說(shuō),給定一個(gè)集合,任何一個(gè)對象是不是這個(gè)集合的元素也就確定了。

 。2)互異性:對于一個(gè)給定的集合,集合中的元素一定是不同的(或說(shuō)是互異的),這就是說(shuō),集合中的任何兩個(gè)元素都是不同的對象,相同的對象歸入同一個(gè)集合時(shí)只能算作集合的一個(gè)元素。

 。3)無(wú)序性:判斷一些對象時(shí)候構成集合,關(guān)鍵在于看這些對象是否有明確的標準。

  集合可以根據它含有的元素的個(gè)數分為兩類(lèi):

  含有有限個(gè)元素的集合叫做有限集,含有無(wú)限個(gè)元素的集合叫做無(wú)限集。

  非負整數全體構成的集合,叫做自然數集,記作N。

  在自然數集內排除0的集合叫做正整數集,記作N+或N_。

  整數全體構成的集合,叫做整數集,記作Z。

  有理數全體構成的集合,叫做有理數集,記作Q。(有理數是整數和分數的統稱(chēng),一切有理數都可以化成分數的形式。)

  實(shí)數全體構成的集合,叫做實(shí)數集,記作R。(包括有理數和無(wú)理數。其中無(wú)理數就是無(wú)限不循環(huán)小數,有理數就包括整數和分數。數學(xué)上,實(shí)數直觀(guān)地定義為和數軸上的點(diǎn)一一對應的數。)

  1、列舉法:如果一個(gè)集合是有限集,元素又不太多,常常把集合的所有元素都列舉出來(lái),寫(xiě)在花括號“{}”內表示這個(gè)集合,例如,由兩個(gè)元素0,1構成的集合可表示為{0,1}。

  有些集合的元素較多,元素的排列又呈現一定的規律,在不致于發(fā)生誤解的情況下,也可以列出幾個(gè)元素作為代表,其他元素用省略號表示。

  例如:不大于100的自然數的全體構成的集合,可表示為{0,1,2,3,…,100}。

  無(wú)限集有時(shí)也用上述的列舉法表示,例如,自然數集N可表示為{1,2,3,…,n,…}。

  2、描述法:一種更有效地描述集合的方法,是用集合中元素的特征性質(zhì)來(lái)描述。

  例如:正偶數構成的集合,它的每一個(gè)元素都具有性質(zhì):“能被2整除,且大于0”

  而這個(gè)集合外的其他元素都不具有這種性質(zhì),因此,我們可以用上述性質(zhì)把正偶數集合表示為{x∈R│x能被2整除,且大于0}或{x∈R│x=2n,n∈N+},大括號內豎線(xiàn)左邊的X表示這個(gè)集合的任意一個(gè)元素,元素X從實(shí)數集合中取值,在豎線(xiàn)右邊寫(xiě)出只有集合內的元素x才具有的性質(zhì)。

  一般地,如果在集合I中,屬于集合A的任意一個(gè)元素x都具有性質(zhì)p(x),而不屬于集合A的元素都不具有的性質(zhì)p(x),則性質(zhì)p(x)叫做集合A的一個(gè)特征性質(zhì)。于是,集合A可以用它的性質(zhì)p(x)描述為{x∈I│p(x)}它表示集合A是由集合I中具有性質(zhì)p(x)的所有元素構成的,這種表示集合的方法,叫做特征性質(zhì)描述法,簡(jiǎn)稱(chēng)描述法。

  例如:集合A={x∈R│x2—1=0}的特征是X2—1=0

  高中數學(xué)基本的知識點(diǎn)總結 3

  空間兩條直線(xiàn)只有三種位置關(guān)系:平行、相交、異面

  按是否共面可分為兩類(lèi):

  (1)共面:平行、相交

  (2)異面:

  異面直線(xiàn)的定義:不同在任何一個(gè)平面內的兩條直線(xiàn)或既不平行也不相交。

  異面直線(xiàn)判定定理:用平面內一點(diǎn)與平面外一點(diǎn)的直線(xiàn),與平面內不經(jīng)過(guò)該點(diǎn)的直線(xiàn)是異面直線(xiàn)。

  兩異面直線(xiàn)所成的角:范圍為(0°,90°)esp.空間向量法

  兩異面直線(xiàn)間距離:公垂線(xiàn)段(有且只有一條)esp.空間向量法

  若從有無(wú)公共點(diǎn)的角度看可分為兩類(lèi):

  (1)有且僅有一個(gè)公共點(diǎn)——相交直線(xiàn);

  (2)沒(méi)有公共點(diǎn)——平行或異面

  直線(xiàn)和平面的位置關(guān)系:

  直線(xiàn)和平面只有三種位置關(guān)系:在平面內、與平面相交、與平面平行

 、僦本(xiàn)在平面內——有無(wú)數個(gè)公共點(diǎn)

 、谥本(xiàn)和平面相交——有且只有一個(gè)公共點(diǎn)

  直線(xiàn)與平面所成的角:平面的一條斜線(xiàn)和它在這個(gè)平面內的射影所成的銳角。

  空間向量法(找平面的法向量)

  規定:

  a、直線(xiàn)與平面垂直時(shí),所成的角為直角,

  b、直線(xiàn)與平面平行或在平面內,所成的角為0°角

  由此得直線(xiàn)和平面所成角的取值范圍為[0°,90°]

  最小角定理:斜線(xiàn)與平面所成的角是斜線(xiàn)與該平面內任一條直線(xiàn)所成角中的最小角

  三垂線(xiàn)定理及逆定理:如果平面內的一條直線(xiàn),與這個(gè)平面的一條斜線(xiàn)的射影垂直,那么它也與這條斜線(xiàn)垂直

  直線(xiàn)和平面垂直

  直線(xiàn)和平面垂直的定義:如果一條直線(xiàn)a和一個(gè)平面內的任意一條直線(xiàn)都垂直,我們就說(shuō)直線(xiàn)a和平面互相垂直.直線(xiàn)a叫做平面的垂線(xiàn),平面叫做直線(xiàn)a的垂面。

  直線(xiàn)與平面垂直的判定定理:如果一條直線(xiàn)和一個(gè)平面內的兩條相交直線(xiàn)都垂直,那么這條直線(xiàn)垂直于這個(gè)平面。

  直線(xiàn)與平面垂直的性質(zhì)定理:如果兩條直線(xiàn)同垂直于一個(gè)平面,那么這兩條直線(xiàn)平行。③直線(xiàn)和平面平行——沒(méi)有公共點(diǎn)

  直線(xiàn)和平面平行的定義:如果一條直線(xiàn)和一個(gè)平面沒(méi)有公共點(diǎn),那么我們就說(shuō)這條直線(xiàn)和這個(gè)平面平行。

  直線(xiàn)和平面平行的判定定理:如果平面外一條直線(xiàn)和這個(gè)平面內的一條直線(xiàn)平行,那么這條直線(xiàn)和這個(gè)平面平行。

  直線(xiàn)和平面平行的性質(zhì)定理:如果一條直線(xiàn)和一個(gè)平面平行,經(jīng)過(guò)這條直線(xiàn)的平面和這個(gè)平面相交,那么這條直線(xiàn)和交線(xiàn)平行。

  高中數學(xué)基本的知識點(diǎn)總結 4

 。1)不等關(guān)系

  感受在現實(shí)世界和日常生活中存在著(zhù)大量的不等關(guān)系,了解不等式(組)的實(shí)際背景。

 。2)一元二次不等式

 、俳(jīng)歷從實(shí)際情境中抽象出一元二次不等式模型的過(guò)程。

 、谕ㄟ^(guò)函數圖象了解一元二次不等式與相應函數、方程的聯(lián)系。

 、蹠(huì )解一元二次不等式,對給定的一元二次不等式,嘗試設計求解的程序框圖。

 。3)二元一次不等式組與簡(jiǎn)單線(xiàn)性規劃問(wèn)題

 、購膶(shí)際情境中抽象出二元一次不等式組。

 、诹私舛淮尾坏仁降膸缀我饬x,能用平面區域表示二元一次不等式組(參見(jiàn)例2)。

 、蹚膶(shí)際情境中抽象出一些簡(jiǎn)單的二元線(xiàn)性規劃問(wèn)題,并能加以解決(參見(jiàn)例3)。

 。4)基本不等式

 、偬剿鞑⒘私饣静坏仁降淖C明過(guò)程。

 、跁(huì )用基本不等式解決簡(jiǎn)單的(。┲祮(wèn)題。

  高中數學(xué)基本的知識點(diǎn)總結 5

  軌跡,包含兩個(gè)方面的問(wèn)題:凡在軌跡上的點(diǎn)都符合給定的條件,這叫做軌跡的純粹性(也叫做必要性);凡不在軌跡上的點(diǎn)都不符合給定的條件,也就是符合給定條件的點(diǎn)必在軌跡上,這叫做軌跡的完備性(也叫做充分性)。

  一、求動(dòng)點(diǎn)的軌跡方程的基本步驟。

  1、建立適當的坐標系,設出動(dòng)點(diǎn)M的坐標;

  2、寫(xiě)出點(diǎn)M的集合;

  3、列出方程=0;

  4、化簡(jiǎn)方程為最簡(jiǎn)形式;

  5、檢驗。

  二、求動(dòng)點(diǎn)的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關(guān)點(diǎn)法、參數法和交軌法等。

  1、直譯法:直接將條件翻譯成等式,整理化簡(jiǎn)后即得動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。

  2、定義法:如果能夠確定動(dòng)點(diǎn)的軌跡滿(mǎn)足某種已知曲線(xiàn)的定義,則可利用曲線(xiàn)的定義寫(xiě)出方程,這種求軌跡方程的方法叫做定義法。

  3、相關(guān)點(diǎn)法:用動(dòng)點(diǎn)Q的坐標x,y表示相關(guān)點(diǎn)P的坐標x0、y0,然后代入點(diǎn)P的坐標(x0,y0)所滿(mǎn)足的曲線(xiàn)方程,整理化簡(jiǎn)便得到動(dòng)點(diǎn)Q軌跡方程,這種求軌跡方程的方法叫做相關(guān)點(diǎn)法。

  4、參數法:當動(dòng)點(diǎn)坐標x、y之間的直接關(guān)系難以找到時(shí),往往先尋找x、y與某一變數t的關(guān)系,得再消去參變數t,得到方程,即為動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做參數法。

  5、交軌法:將兩動(dòng)曲線(xiàn)方程中的參數消去,得到不含參數的方程,即為兩動(dòng)曲線(xiàn)交點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做交軌法。

  求動(dòng)點(diǎn)軌跡方程的一般步驟:

 、俳ㄏ怠⑦m當的坐標系;

 、谠O點(diǎn)——設軌跡上的任一點(diǎn)P(x,y);

 、哿惺健谐鰟(dòng)點(diǎn)p所滿(mǎn)足的關(guān)系式;

 、艽鷵Q——依條件的特點(diǎn),選用距離公式、斜率公式等將其轉化為關(guān)于X,Y的方程式,并化簡(jiǎn);

 、葑C明——證明所求方程即為符合條件的動(dòng)點(diǎn)軌跡方程。

  高中數學(xué)基本的知識點(diǎn)總結 6

  空間兩條直線(xiàn)只有三種位置關(guān)系:平行、相交、異面。

  按是否共面可分為兩類(lèi):

 。1)共面:平行、相交

 。2)異面:

  異面直線(xiàn)的定義:不同在任何一個(gè)平面內的兩條直線(xiàn)或既不平行也不相交。

  異面直線(xiàn)判定定理:用平面內一點(diǎn)與平面外一點(diǎn)的直線(xiàn),與平面內不經(jīng)過(guò)該點(diǎn)的直線(xiàn)是異面直線(xiàn)。

  兩異面直線(xiàn)所成的角:范圍為(0°,90°)esp?臻g向量法。

  兩異面直線(xiàn)間距離:公垂線(xiàn)段(有且只有一條)esp?臻g向量法。

  若從有無(wú)公共點(diǎn)的角度看可分為兩類(lèi):

 。1)有且僅有一個(gè)公共點(diǎn)——相交直線(xiàn);

 。2)沒(méi)有公共點(diǎn)——平行或異面。

  直線(xiàn)和平面的位置關(guān)系:

  直線(xiàn)和平面只有三種位置關(guān)系:在平面內、與平面相交、與平面平行。

 、僦本(xiàn)在平面內——有無(wú)數個(gè)公共點(diǎn)

 、谥本(xiàn)和平面相交——有且只有一個(gè)公共點(diǎn)

  直線(xiàn)與平面所成的角:平面的一條斜線(xiàn)和它在這個(gè)平面內的射影所成的銳角。

  空間向量法(找平面的法向量)

  規定:a、直線(xiàn)與平面垂直時(shí),所成的角為直角;b、直線(xiàn)與平面平行或在平面內,所成的角為0°角。

  由此得直線(xiàn)和平面所成角的取值范圍為[0°,90°]。

  最小角定理:斜線(xiàn)與平面所成的角是斜線(xiàn)與該平面內任一條直線(xiàn)所成角中的最小角。

  三垂線(xiàn)定理及逆定理:如果平面內的一條直線(xiàn),與這個(gè)平面的一條斜線(xiàn)的射影垂直,那么它也與這條斜線(xiàn)垂直。

  直線(xiàn)和平面垂直

  直線(xiàn)和平面垂直的定義:如果一條直線(xiàn)a和一個(gè)平面內的任意一條直線(xiàn)都垂直,我們就說(shuō)直線(xiàn)a和平面互相垂直。直線(xiàn)a叫做平面的垂線(xiàn),平面叫做直線(xiàn)a的垂面。

  直線(xiàn)與平面垂直的判定定理:如果一條直線(xiàn)和一個(gè)平面內的兩條相交直線(xiàn)都垂直,那么這條直線(xiàn)垂直于這個(gè)平面。

  直線(xiàn)與平面垂直的性質(zhì)定理:如果兩條直線(xiàn)同垂直于一個(gè)平面,那么這兩條直線(xiàn)平行。直線(xiàn)和平面平行——沒(méi)有公共點(diǎn)

  直線(xiàn)和平面平行的定義:如果一條直線(xiàn)和一個(gè)平面沒(méi)有公共點(diǎn),那么我們就說(shuō)這條直線(xiàn)和這個(gè)平面平行。

  直線(xiàn)和平面平行的判定定理:如果平面外一條直線(xiàn)和這個(gè)平面內的一條直線(xiàn)平行,那么這條直線(xiàn)和這個(gè)平面平行。

  直線(xiàn)和平面平行的性質(zhì)定理:如果一條直線(xiàn)和一個(gè)平面平行,經(jīng)過(guò)這條直線(xiàn)的平面和這個(gè)平面相交,那么這條直線(xiàn)和交線(xiàn)平行。

  高中數學(xué)基本的知識點(diǎn)總結 7

  第一章三角函數

  1.1任意角和弧度制

  正角、負角、零角正角、負角、零角

  象限角、軸線(xiàn)角象限角、軸線(xiàn)角

  終邊相同的角終邊相同的角

  弧度制、弧度與角度的互化弧度制、弧度與角度的互化

  1.2任意角的三角函數

  任意角的三角函數任意角的三角函數

  三角函數線(xiàn)(正弦線(xiàn)、余弦線(xiàn)、正切線(xiàn))三角函數線(xiàn)(正弦線(xiàn)、余弦線(xiàn)、正切線(xiàn))

  同角三角函數的基本關(guān)系式同角三角函數的基本關(guān)系式

  1.3三角函數的誘導公式

  三角函數的誘導公式三角函數的誘導公式

  1.4三角函數的圖象與性質(zhì)

  正弦、余弦函數的圖象與性質(zhì)(定義域、值域、單調性、奇偶性等)正弦、余弦函數的圖象與性質(zhì)(定義域、值域、單調性、奇偶性等)

  正切、余切函數的圖象與性質(zhì)(定義域、值域、單調性、奇偶性等)正切、余切函數的圖象與性質(zhì)(定義域、值域、單調性、奇偶性等)

  1.5函數y=Asin(ωxφ)的圖象

  函數y=Asin(ωxφ)的圖象與性質(zhì)函數y=Asin(wx φ)的圖象與性質(zhì)

  1.6三角函數模型的簡(jiǎn)單應用

  第二章平面向量

  2.1平面向量的實(shí)際背景及基本概念

  向量的概念及幾何表示向量的概念及幾何表示

  零向量與單位向量零向量與單位向量

  相等向量與共線(xiàn)向量的定義相等向量與共線(xiàn)向量的定義

  2.2平面向量的線(xiàn)性運算

  向量的加、減法運算及幾何意義向量的加、減法運算及幾何意義

  向量數乘運算及幾何意義向量數乘運算及幾何意義

  向量的線(xiàn)性運算及坐標表示向量的線(xiàn)性運算及坐標表示

  2.3平面向量的基本定理及坐標表示

  平面向量基本定理及坐標表示平面向量基本定理及坐標表示

  向量共線(xiàn)的充要條件及坐標表示向量共線(xiàn)的充要條件及坐標表示

  2.4平面向量的數量積

  向量數量積的含義及幾何意義向量數量積的含義及幾何意義

  向量數量積的運算向量數量積的運算

  用數量積判斷兩個(gè)向量的垂直關(guān)系用數量積判斷兩個(gè)向量的垂直關(guān)系

  用坐標表示向量的數量積用坐標表示向量的數量積

  向量模的計算向量模的計算

  用數量積表示兩個(gè)向量的夾角用數量積表示兩個(gè)向量的夾角

  2.5平面向量應用舉例

  平面向量的應用平面向量的應用

  第三章三角恒等變換

  3.1兩角和與差的正弦、余弦和正切公式

  兩角和與差的三角函數及三角恒等變換兩角和與差的三角函數及三角恒等變換

  3.2簡(jiǎn)單的三角恒等變換

  兩角和與差的三角函數及三角恒等變換

  高中數學(xué)基本的知識點(diǎn)總結 8

  一、簡(jiǎn)單隨機抽樣

  設一個(gè)總體的個(gè)體數為N,如果通過(guò)逐個(gè)抽取的方法從中抽取一個(gè)樣本,且每次抽取時(shí),各個(gè)體被抽到的概率相等,就稱(chēng)這樣的抽樣為簡(jiǎn)單隨機抽樣。一般地如果用簡(jiǎn)單隨機抽樣從個(gè)體數為N的總體中抽取一個(gè)容量為n的樣本那么每個(gè)個(gè)體被抽到的概率等于n/N.常用的簡(jiǎn)單隨機抽樣方法有:抽簽法、隨機數法。

  1.抽簽法

  一般地,抽簽法就是把總體中的N個(gè)個(gè)體編號,把號碼寫(xiě)在號簽上,將號簽放在一個(gè)容器中,攪拌均勻后,每次從中抽取一個(gè)號簽,連續抽取n次,就得到一個(gè)容量為n的樣本。

  2.隨機數法

  隨機抽樣中,另一個(gè)經(jīng)常被采用的方法是隨機數法,即利用隨機數表、隨機數骰子或計算機產(chǎn)生的隨機數進(jìn)行抽樣。

  二、活用隨機抽樣

  系統抽樣的最基本特征是“等距性”,每組內所抽取的號碼需要依據第一組抽取的號碼和組距是唯一確定,每組抽取樣本的號碼依次構成一個(gè)以第一組抽取的號碼m為首項,組距d為公差的等差數列{an},第k組抽取樣本的號碼,ak=m+(k-1)d,如本題中根據第一組的樣本號碼和組距,可得第k組抽取號碼應該為9+30x(k-1)

  三、系統抽樣

  當總體中的個(gè)體數較多時(shí),采用簡(jiǎn)單隨機抽樣顯得較為費事,這時(shí),可將總體分成均衡的幾個(gè)部分,然后按照預先定出的規則,從每一部分抽取一個(gè)個(gè)體,得到所需要的樣本,這種抽樣叫做系統抽樣。

  四、分層抽樣

  當已知總體有差異明顯的幾部分組成時(shí),為了使樣本更充分地反映總體的情況,常常將總體分為幾個(gè)部分,然后按照各個(gè)部分所占比例進(jìn)行抽樣,這種抽樣叫做分層抽樣,其中所分層的各部分叫做層

  高中數學(xué)基本的知識點(diǎn)總結 9

  1、圓的定義

  平面內到一定點(diǎn)的距離等于定長(cháng)的點(diǎn)的集合叫圓,定點(diǎn)為圓心,定長(cháng)為圓的半徑。

  2、圓的方程

  (x-a)^2+(y-b)^2=r^2

 。1)標準方程,圓心(a,b),半徑為r;

 。2)求圓方程的方法:

  一般都采用待定系數法:先設后求。確定一個(gè)圓需要三個(gè)獨立條件,若利用圓的標準方程,

  需求出a,b,r;若利用一般方程,需要求出D,E,F;

  另外要注意多利用圓的幾何性質(zhì):如弦的中垂線(xiàn)必經(jīng)過(guò)原點(diǎn),以此來(lái)確定圓心的位置。

  3、直線(xiàn)與圓的位置關(guān)系

  直線(xiàn)與圓的位置關(guān)系有相離,相切,相交三種情況:

 。1)設直線(xiàn),圓,圓心到l的距離為,則有;;

 。2)過(guò)圓外一點(diǎn)的切線(xiàn):①k不存在,驗證是否成立②k存在,設點(diǎn)斜式方程,用圓心到該直線(xiàn)距離=半徑,求解k,得到方程【一定兩解】

  (3)過(guò)圓上一點(diǎn)的切線(xiàn)方程:圓(x-a)2+(y-b)2=r2,圓上一點(diǎn)為(x0,y0),則過(guò)此點(diǎn)的切線(xiàn)方程為(x0-a)(x-a)+(y0-b)(y-b)= r2

  高中數學(xué)基本的知識點(diǎn)總結 10

  1、集合的含義與表示

  集合的含義:集合為一些確定的、不同的東西的全體,人們能意識到這些東西,并且能判斷一個(gè)給定的東西是否屬于這個(gè)整體。

  把研究對象統稱(chēng)為元素,把一些元素組成的總體叫集合,簡(jiǎn)稱(chēng)為集。

  2、集合的中元素的三個(gè)特性:

 。1)元素的確定性:集合確定,則一元素是否屬于這個(gè)集合是確定的:屬于或不屬于。

 。2)元素的互異性:一個(gè)給定集合中的元素是唯一的,不可重復的。

 。3)元素的無(wú)序性:集合中元素的位置是可以改變的,并且改變位置不影響集合

  3、集合的表示:{…}

 。1)用大寫(xiě)字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

 。2)集合的表示方法:列舉法與描述法。

  a、列舉法:將集合中的元素一一列舉出來(lái){a,b,c……}

  b、描述法:

 、賲^間法:將集合中元素的公共屬性描述出來(lái),寫(xiě)在大括號內表示集合。

  {xR|x—32},{x|x—32}

 、谡Z(yǔ)言描述法:例:{不是直角三角形的三角形}

 、踁enn圖:畫(huà)出一條封閉的曲線(xiàn),曲線(xiàn)里面表示集合。

  4、集合的分類(lèi):

 。1)有限集:含有有限個(gè)元素的集合

 。2)無(wú)限集:含有無(wú)限個(gè)元素的集合

 。3)空集:不含任何元素的集合

  5、元素與集合的關(guān)系:

 。1)元素在集合里,則元素屬于集合,即:aA

 。2)元素不在集合里,則元素不屬于集合,即:a¢A

  注意:常用數集及其記法:

  非負整數集(即自然數集)記作:N

  正整數集N_或N+

  整數集Z

  有理數集Q

  實(shí)數集R

  6、集合間的基本關(guān)系

 。1)“包含”關(guān)系(1)—子集

  定義:如果集合A的任何一個(gè)元素都是集合B的元素,我們說(shuō)這兩個(gè)集合有包含關(guān)系,稱(chēng)集合A是集合B的子集。

  高三數學(xué)必修1知識點(diǎn)二

  1、函數的奇偶性

 。1)若f(x)是偶函數,那么f(x)=f(—x);

 。2)若f(x)是奇函數,0在其定義域內,則f(0)=0(可用于求參數);

 。3)判斷函數奇偶性可用定義的等價(jià)形式:f(x)±f(—x)=0或(f(x)≠0);

 。4)若所給函數的解析式較為復雜,應先化簡(jiǎn),再判斷其奇偶性;

 。5)奇函數在對稱(chēng)的單調區間內有相同的單調性;偶函數在對稱(chēng)的單調區間內有相反的單調性;

  2、復合函數的有關(guān)問(wèn)題

 。1)復合函數定義域求法:若已知的定義域為[a,b],其復合函數f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求f(x)的定義域,相當于x∈[a,b]時(shí),求g(x)的值域(即f(x)的定義域);研究函數的問(wèn)題一定要注意定義域優(yōu)先的原則。

 。2)復合函數的單調性由“同增異減”判定;

  3、函數圖像(或方程曲線(xiàn)的對稱(chēng)性)

 。1)證明函數圖像的對稱(chēng)性,即證明圖像上任意點(diǎn)關(guān)于對稱(chēng)中心(對稱(chēng)軸)的對稱(chēng)點(diǎn)仍在圖像上;

 。2)證明圖像C1與C2的對稱(chēng)性,即證明C1上任意點(diǎn)關(guān)于對稱(chēng)中心(對稱(chēng)軸)的對稱(chēng)點(diǎn)仍在C2上,反之亦然;

 。3)曲線(xiàn)C1:f(x,y)=0,關(guān)于y=x+a(y=—x+a)的對稱(chēng)曲線(xiàn)C2的方程為f(y—a,x+a)=0(或f(—y+a,—x+a)=0);

 。4)曲線(xiàn)C1:f(x,y)=0關(guān)于點(diǎn)(a,b)的對稱(chēng)曲線(xiàn)C2方程為:f(2a—x,2b—y)=0;

 。5)若函數y=f(x)對x∈R時(shí),f(a+x)=f(a—x)恒成立,則y=f(x)圖像關(guān)于直線(xiàn)x=a對稱(chēng);

 。6)函數y=f(x—a)與y=f(b—x)的圖像關(guān)于直線(xiàn)x=對稱(chēng);

  4、函數的周期性

 。1)y=f(x)對x∈R時(shí),f(x +a)=f(x—a)或f(x—2a)=f(x)(a0)恒成立,則y=f(x)是周期為2a的周期函數;

 。2)若y=f(x)是偶函數,其圖像又關(guān)于直線(xiàn)x=a對稱(chēng),則f(x)是周期為2︱a︱的周期函數;

 。3)若y=f(x)奇函數,其圖像又關(guān)于直線(xiàn)x=a對稱(chēng),則f(x)是周期為4︱a︱的周期函數;

 。4)若y=f(x)關(guān)于點(diǎn)(a,0),(b,0)對稱(chēng),則f(x)是周期為2的周期函數;

 。5)y=f(x)的圖象關(guān)于直線(xiàn)x=a,x=b(a≠b)對稱(chēng),則函數y=f(x)是周期為2的周期函數;

 。6)y=f(x)對x∈R時(shí),f(x+a)=—f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函數;

  5、方程

 。1)方程k=f(x)有解k∈D(D為f(x)的值域);

 。2)a≥f(x)恒成立a≥[f(x)]max,;

  a≤f(x)恒成立a≤[f(x)]min;

 。3)(a0,a≠1,b0,n∈R+);

  log a N=(a0,a≠1,b0,b≠1);

 。4)log a b的符號由口訣“同正異負”記憶;

  a log a N= N(a0,a≠1,N0);

  6、映射

  判斷對應是否為映射時(shí),抓住兩點(diǎn):

 。1)A中元素必須都有象且唯一;

 。2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

  7、函數單調性

 。1)能熟練地用定義證明函數的單調性,求反函數,判斷函數的奇偶性;

 。2)依據單調性,利用一次函數在區間上的保號性可解決求一類(lèi)參數的范圍問(wèn)題

  8、反函數

  對于反函數,應掌握以下一些結論:

 。1)定義域上的單調函數必有反函數;

 。2)奇函數的反函數也是奇函數;

 。3)定義域為非單元素集的偶函數不存在反函數;

 。4)周期函數不存在反函數;(5)互為反函數的兩個(gè)函數具有相同的單調性;

 。5)y=f(x)與y=f—1(x)互為反函數,設f(x)的定義域為A,值域為B,則有f[f——1(x)]=x(x∈B),f——1[f(x)]=x(x∈A)、

  9、數形結合

  處理二次函數的問(wèn)題勿忘數形結合;二次函數在閉區間上必有最值,求最值問(wèn)題用“兩看法”:一看開(kāi)口方向;二看對稱(chēng)軸與所給區間的相對位置關(guān)系、

  10、恒成立問(wèn)題

  恒成立問(wèn)題的處理方法:

 。1)分離參數法;

 。2)轉化為一元二次方程的根的分布列不等式(組)求解;

  高中數學(xué)基本的知識點(diǎn)總結 11

  一.算法,概率和統計

  1.算法初步(約12課時(shí))

 。1)算法的含義、程序框圖

 、偻ㄟ^(guò)對解決具體問(wèn)題過(guò)程與步驟的分析(如,二元一次方程組求解等問(wèn)題),體會(huì )算法的思想,了解算法的含義。

 、谕ㄟ^(guò)模仿、操作、探索,經(jīng)歷通過(guò)設計程序框圖表達解決問(wèn)題的過(guò)程。在具體問(wèn)題的解決過(guò)程中(如,三元一次方程組求解等問(wèn)題),理解程序框圖的三種基本邏輯結構:順序、條件分支、循環(huán)。

 。2)基本算法語(yǔ)句

  經(jīng)歷將具體問(wèn)題的程序框圖轉化為程序語(yǔ)句的過(guò)程,理解幾種基本算法語(yǔ)句--輸入語(yǔ)句、輸出語(yǔ)句、賦值語(yǔ)句、條件語(yǔ)句、循環(huán)語(yǔ)句,進(jìn)一步體會(huì )算法的基本思想。

 。3)通過(guò)閱讀中國古代數學(xué)中的算法案例,體會(huì )中國古代數學(xué)對世界數學(xué)發(fā)展的貢獻。

  3.概率(約8課時(shí))

 。1)在具體情境中,了解隨機事件發(fā)生的不確定性和頻率的穩定性,進(jìn)一步了解概率的意義以及頻率與概率的區別。

 。2)通過(guò)實(shí)例,了解兩個(gè)互斥事件的概率加法公式。

 。3)通過(guò)實(shí)例,理解古典概型及其概率計算公式,會(huì )用列舉法計算一些隨機事件所含的基本事件數及事件發(fā)生的概率。

 。4)了解隨機數的意義,能運用模擬方法(包括計算器產(chǎn)生隨機數來(lái)進(jìn)行模擬)估計概率,初步體會(huì )幾何概型的意義(參見(jiàn)例3)。

 。5)通過(guò)閱讀材料,了解人類(lèi)認識隨機現象的過(guò)程。

  2.統計(約16課時(shí))

 。1)隨機抽樣

 、倌軓默F實(shí)生活或其他學(xué)科中提出具有一定價(jià)值的統計問(wèn)題。

 、诮Y合具體的實(shí)際問(wèn)題情境,理解隨機抽樣的必要性和重要性。

 、墼趨⑴c解決統計問(wèn)題的過(guò)程中,學(xué)會(huì )用簡(jiǎn)單隨機抽樣方法從總體中抽取樣本;通過(guò)對實(shí)例的分析,了解分層抽樣和系統抽樣方法。

 、苣芡ㄟ^(guò)試驗、查閱資料、設計調查問(wèn)卷等方法收集數據。

 。2)用樣本估計總體

 、偻ㄟ^(guò)實(shí)例體會(huì )分布的意義和作用,在表示樣本數據的過(guò)程中,學(xué)會(huì )列頻率分布表、畫(huà)頻率分布直方圖、頻率折線(xiàn)圖、莖葉圖(參見(jiàn)例1),體會(huì )他們各自的特點(diǎn)。

 、谕ㄟ^(guò)實(shí)例理解樣本數據標準差的意義和作用,學(xué)會(huì )計算數據標準差。

 、勰芨鶕䦟(shí)際問(wèn)題的需求合理地選取樣本,從樣本數據中提取基本的數字特征(如平均數、標準差),并作出合理的解釋。

 、茉诮鉀Q統計問(wèn)題的過(guò)程中,進(jìn)一步體會(huì )用樣本估計總體的思想,會(huì )用樣本的頻率分布估計總體分布,會(huì )用樣本的基本數字特征估計總體的基本數字特征;初步體會(huì )樣本頻率分布和數字特征的隨機性。

 、輹(huì )用隨機抽樣的基本方法和樣本估計總體的思想,解決一些簡(jiǎn)單的實(shí)際問(wèn)題;能通過(guò)對數據的分析為合理的決策提供一些依據,認識統計的作用,體會(huì )統計思維與確定性思維的差異。

 、扌纬蓪祿幚磉^(guò)程進(jìn)行初步評價(jià)的意識。

 。3)變量的相關(guān)性

 、偻ㄟ^(guò)收集現實(shí)問(wèn)題中兩個(gè)有關(guān)聯(lián)變量的數據作出散點(diǎn)圖,并利用散點(diǎn)圖直觀(guān)認識變量間的相關(guān)關(guān)系。

 、诮(jīng)歷用不同估算方法描述兩個(gè)變量線(xiàn)性相關(guān)的過(guò)程。知道最小二乘法的思想,能根據給出的線(xiàn)性回歸方程系數公式建立線(xiàn)性回歸方程。

  二.常用邏輯用語(yǔ)

  1。命題及其關(guān)系

 、倭私饷}的逆命題、否命題與逆否命題。

 、诶斫獗匾獥l件、充分條件與充要條件的意義,會(huì )分析四種命題的相互關(guān)系。

 。2)簡(jiǎn)單的邏輯聯(lián)結詞

  通過(guò)數學(xué)實(shí)例,了解"或"、"且"、"非"的含義。

 。3)全稱(chēng)量詞與存在量詞

 、偻ㄟ^(guò)生活和數學(xué)中的豐富實(shí)例,理解全稱(chēng)量詞與存在量詞的意義。

 、谀苷_地對含有一個(gè)量詞的命題進(jìn)行否定。

  3.導數及其應用(約16課時(shí))

 。1)導數概念及其幾何意義

 、偻ㄟ^(guò)對大量實(shí)例的分析,經(jīng)歷由平均變化率過(guò)渡到瞬時(shí)變化率的過(guò)程,了解導數概念的實(shí)際背景,知道瞬時(shí)變化率就是導數,體會(huì )導數的思想及其內涵(參見(jiàn)例2、例3)。

 、谕ㄟ^(guò)函數圖像直觀(guān)地理解導數的幾何意義。

 。2)導數的運算

 、倌芨鶕䦟刀x,求函數y=c,y=x,y=x2,y=1/x的導數。

 、谀芾媒o出的基本初等函數的導數公式和導數的四則運算法則求簡(jiǎn)單函數的導數。

 、蹠(huì )使用導數公式表。

 。3)導數在研究函數中的應用

 、俳Y合實(shí)例,借助幾何直觀(guān)探索并了解函數的單調性與導數的關(guān)系(參見(jiàn)例4);能利用導數研究函數的單調性,會(huì )求不超過(guò)三次的多項式函數的單調區間。

 、诮Y合函數的圖像,了解函數在某點(diǎn)取得極值的必要條件和充分條件;會(huì )用導數求不超過(guò)三次的多項式函數的極大值、極小值,以及在給定區間上不超過(guò)三次的多項式函數的最大值、最小值。2.圓錐曲線(xiàn)與方程(約12課時(shí))

 。1)了解圓錐曲線(xiàn)的實(shí)際背景,感受圓錐曲線(xiàn)在刻畫(huà)現實(shí)世界和解決實(shí)際問(wèn)題中的作用。

 。2)經(jīng)歷從具體情境中抽象出橢圓模型的過(guò)程(參見(jiàn)例1),掌握橢圓的定義、標準方程及簡(jiǎn)單幾何性質(zhì)。

 。3)了解拋物線(xiàn)、雙曲線(xiàn)的定義、幾何圖形和標準方程,知道它們的簡(jiǎn)單幾何性質(zhì)。

 。4)通過(guò)圓錐曲線(xiàn)與方程的學(xué)習,進(jìn)一步體會(huì )數形結合的思想。

 。5)了解圓錐曲線(xiàn)的簡(jiǎn)單應用。

  三.統計案例(約14課時(shí))

  通過(guò)典型案例,學(xué)習下列一些常見(jiàn)的統計方法,并能初步應用這些方法解決一些實(shí)際問(wèn)題。

 、偻ㄟ^(guò)對典型案例(如"肺癌與吸煙有關(guān)嗎"等)的探究,了解獨立性檢驗(只要求2×2列聯(lián)表)的基本思想、方法及初步應用。

 、谕ㄟ^(guò)對典型案例(如"質(zhì)量控制"、"新藥是否有效"等)的探究,了解實(shí)際推斷原理和假設檢驗的基本思想、方法及初步應用(參見(jiàn)例1)。

 、弁ㄟ^(guò)對典型案例(如"昆蟲(chóng)分類(lèi)"等)的探究,了解聚類(lèi)分析的基本思想、方法及初步應用。

 、芡ㄟ^(guò)對典型案例(如"人的體重與身高的關(guān)系"等)的探究,進(jìn)一步了解回歸的基本思想、方法及初步應用。

  2.推理與證明(約10課時(shí))

 。1)合情推理與演繹推理

 、俳Y合已學(xué)過(guò)的數學(xué)實(shí)例和生活中的實(shí)例,了解合情推理的含義,能利用歸納和類(lèi)比等進(jìn)行簡(jiǎn)單的推理,體會(huì )并認識合情推理在數學(xué)發(fā)現中的作用(參見(jiàn)例2、例3)。

 、诮Y合已學(xué)過(guò)的數學(xué)實(shí)例和生活中的實(shí)例,體會(huì )演繹推理的重要性,掌握演繹推理的基本方法,并能運用它們進(jìn)行一些簡(jiǎn)單推理。

 、弁ㄟ^(guò)具體實(shí)例,了解合情推理和演繹推理之間的聯(lián)系和差異。

 。2)直接證明與間接證明

 、俳Y合已經(jīng)學(xué)過(guò)的數學(xué)實(shí)例,了解直接證明的兩種基本方法:分析法和綜合法;了解分析法和綜合法的思考過(guò)程、特點(diǎn)。

 、诮Y合已經(jīng)學(xué)過(guò)的數學(xué)實(shí)例,了解間接證明的一種基本方法--反證法;了解反證法的思考過(guò)程、特點(diǎn)。

  高中數學(xué)基本的知識點(diǎn)總結 12

  一次函數

  一、定義與定義式:

  自變量x和因變量y有如下關(guān)系:

  y=kx+b

  則此時(shí)稱(chēng)y是x的一次函數。

  特別地,當b=0時(shí),y是x的正比例函數。

  即:y=kx (k為常數,k0)

  二、一次函數的性質(zhì):

  1、y的變化值與對應的x的變化值成正比例,比值為k

  即:y=kx+b (k為任意不為零的實(shí)數b取任何實(shí)數)

  2、當x=0時(shí),b為函數在y軸上的截距。

  三、一次函數的圖像及性質(zhì):

  1、作法與圖形:通過(guò)如下3個(gè)步驟

 。1)列表;

 。2)描點(diǎn);

 。3)連線(xiàn),可以作出一次函數的圖像一條直線(xiàn)。因此,作一次函數的圖像只需知道2點(diǎn),并連成直線(xiàn)即可。(通常找函數圖像與x軸和y軸的交點(diǎn))

  2、性質(zhì):(1)在一次函數上的任意一點(diǎn)P(x,y),都滿(mǎn)足等式:y=kx+b。(2)一次函數與y軸交點(diǎn)的坐標總是(0,b),與x軸總是交于(—b/k,0)正比例函數的圖像總是過(guò)原點(diǎn)。

  3、k,b與函數圖像所在象限:

  當k0時(shí),直線(xiàn)必通過(guò)一、三象限,y隨x的增大而增大;

  當k0時(shí),直線(xiàn)必通過(guò)二、四象限,y隨x的增大而減小。

  當b0時(shí),直線(xiàn)必通過(guò)一、二象限;

  當b=0時(shí),直線(xiàn)通過(guò)原點(diǎn)

  當b0時(shí),直線(xiàn)必通過(guò)三、四象限。

  特別地,當b=O時(shí),直線(xiàn)通過(guò)原點(diǎn)O(0,0)表示的是正比例函數的圖像。

  這時(shí),當k0時(shí),直線(xiàn)只通過(guò)一、三象限;當k0時(shí),直線(xiàn)只通過(guò)二、四象限。

  四、確定一次函數的表達式:

  已知點(diǎn)A(x1,y1);B(x2,y2),請確定過(guò)點(diǎn)A、B的一次函數的表達式。

 。1)設一次函數的表達式(也叫解析式)為y=kx+b。

 。2)因為在一次函數上的任意一點(diǎn)P(x,y),都滿(mǎn)足等式y=kx+b。所以可以列出2個(gè)方程:y1=kx1+b ①和y2=kx2+b ②

 。3)解這個(gè)二元一次方程,得到k,b的值。

 。4)最后得到一次函數的表達式。

  五、一次函數在生活中的應用:

  1、當時(shí)間t一定,距離s是速度v的一次函數。s=vt。

  2、當水池抽水速度f(wàn)一定,水池中水量g是抽水時(shí)間t的一次函數。設水池中原有水量S。g=S—ft。

  六、常用公式:(不全,希望有人補充)

  1、求函數圖像的k值:(y1—y2)/(x1—x2)

  2、求與x軸平行線(xiàn)段的中點(diǎn):|x1—x2|/2

  3、求與y軸平行線(xiàn)段的中點(diǎn):|y1—y2|/2

  4、求任意線(xiàn)段的長(cháng):(x1—x2)^2+(y1—y2)^2 (注:根號下(x1—x2)與(y1—y2)的平方和)

  二次函數

  I、定義與定義表達式

  一般地,自變量x和因變量y之間存在如下關(guān)系:

  y=ax^2+bx+c

 。╝,b,c為常數,a0,且a決定函數的開(kāi)口方向,a0時(shí),開(kāi)口方向向上,a0時(shí),開(kāi)口方向向下,IaI還可以決定開(kāi)口大小,IaI越大開(kāi)口就越小,IaI越小開(kāi)口就越大、)

  則稱(chēng)y為x的二次函數。

  二次函數表達式的右邊通常為二次三項式。

  II、二次函數的三種表達式

  一般式:y=ax^2+bx+c(a,b,c為常數,a0)

  頂點(diǎn)式:y=a(x—h)^2+k [拋物線(xiàn)的頂點(diǎn)P(h,k)]

  交點(diǎn)式:y=a(x—x)(x—x ) [僅限于與x軸有交點(diǎn)A(x,0)和B(x,0)的拋物線(xiàn)]

  注:在3種形式的互相轉化中,有如下關(guān)系:

  h=—b/2ak=(4ac—b^2)/4a x,x=(—bb^2—4ac)/2a

  III、二次函數的圖像

  在平面直角坐標系中作出二次函數y=x^2的圖像,

  可以看出,二次函數的圖像是一條拋物線(xiàn)。

  IV、拋物線(xiàn)的性質(zhì)

  1、拋物線(xiàn)是軸對稱(chēng)圖形。對稱(chēng)軸為直線(xiàn)

  x= —b/2a。

  對稱(chēng)軸與拋物線(xiàn)唯一的交點(diǎn)為拋物線(xiàn)的頂點(diǎn)P。

  特別地,當b=0時(shí),拋物線(xiàn)的對稱(chēng)軸是y軸(即直線(xiàn)x=0)

  2、拋物線(xiàn)有一個(gè)頂點(diǎn)P,坐標為

  P( —b/2a,(4ac—b^2)/4a )

  當—b/2a=0時(shí),P在y軸上;當= b^2—4ac=0時(shí),P在x軸上。

  3、二次項系數a決定拋物線(xiàn)的開(kāi)口方向和大小。

  當a0時(shí),拋物線(xiàn)向上開(kāi)口;當a0時(shí),拋物線(xiàn)向下開(kāi)口。

  |a|越大,則拋物線(xiàn)的開(kāi)口越小。

  4、一次項系數b和二次項系數a共同決定對稱(chēng)軸的位置。

  當a與b同號時(shí)(即ab0),對稱(chēng)軸在y軸左;

  當a與b異號時(shí)(即ab0),對稱(chēng)軸在y軸右。

  5、常數項c決定拋物線(xiàn)與y軸交點(diǎn)。

  拋物線(xiàn)與y軸交于(0,c)

  6、拋物線(xiàn)與x軸交點(diǎn)個(gè)數

  = b^2—4ac0時(shí),拋物線(xiàn)與x軸有2個(gè)交點(diǎn)。

  = b^2—4ac=0時(shí),拋物線(xiàn)與x軸有1個(gè)交點(diǎn)。

  = b^2—4ac0時(shí),拋物線(xiàn)與x軸沒(méi)有交點(diǎn)。X的取值是虛數(x= —bb^2—4ac的值的相反數,乘上虛數i,整個(gè)式子除以2a)

  V、二次函數與一元二次方程

  特別地,二次函數(以下稱(chēng)函數)y=ax^2+bx+c,

  當y=0時(shí),二次函數為關(guān)于x的一元二次方程(以下稱(chēng)方程),

  即ax^2+bx+c=0

  此時(shí),函數圖像與x軸有無(wú)交點(diǎn)即方程有無(wú)實(shí)數根。

  函數與x軸交點(diǎn)的橫坐標即為方程的根。

  1、二次函數y=ax^2,y=a(x—h)^2,y=a(x—h)^2+k,y=ax^2+bx+c(各式中,a0)的圖象形狀相同,只是位置不同,它們的頂點(diǎn)坐標及對稱(chēng)軸如下表:

  解析式頂點(diǎn)坐標對稱(chēng)軸

  y=ax^2(0,0) x=0

  y=a(x—h)^2(h,0) x=h

  y=a(x—h)^2+k(h,k) x=h

  y=ax^2+bx+c(—b/2a,[4ac—b^2]/4a) x=—b/2a

  當h0時(shí),y=a(x—h)^2的圖象可由拋物線(xiàn)y=ax^2向右平行移動(dòng)h個(gè)單位得到,

  當h0時(shí),則向左平行移動(dòng)|h|個(gè)單位得到、

  當h0,k0時(shí),將拋物線(xiàn)y=ax^2向右平行移動(dòng)h個(gè)單位,再向上移動(dòng)k個(gè)單位,就可以得到y=a(x—h)^2+k的圖象;

  當h0,k0時(shí),將拋物線(xiàn)y=ax^2向右平行移動(dòng)h個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y=a(x—h)^2+k的圖象;

  當h0,k0時(shí),將拋物線(xiàn)向左平行移動(dòng)|h|個(gè)單位,再向上移動(dòng)k個(gè)單位可得到y=a(x—h)^2+k的圖象;

  當h0,k0時(shí),將拋物線(xiàn)向左平行移動(dòng)|h|個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y=a(x—h)^2+k的圖象;

  因此,研究拋物線(xiàn)y=ax^2+bx+c(a0)的圖象,通過(guò)配方,將一般式化為y=a(x—h)^2+k的形式,可確定其頂點(diǎn)坐標、對稱(chēng)軸,拋物線(xiàn)的大體位置就很清楚了、這給畫(huà)圖象提供了方便、

  2、拋物線(xiàn)y=ax^2+bx+c(a0)的圖象:當a0時(shí),開(kāi)口向上,當a0時(shí)開(kāi)口向下,對稱(chēng)軸是直線(xiàn)x=—b/2a,頂點(diǎn)坐標是(—b/2a,[4ac—b^2]/4a)、

  3、拋物線(xiàn)y=ax^2+bx+c(a0),若a0,當x —b/2a時(shí),y隨x的增大而減;當x —b/2a時(shí),y隨x的增大而增大、若a0,當x —b/2a時(shí),y隨x的增大而增大;當x —b/2a時(shí),y隨x的增大而減小、

  4、拋物線(xiàn)y=ax^2+bx+c的圖象與坐標軸的交點(diǎn):

 。1)圖象與y軸一定相交,交點(diǎn)坐標為(0,c);

 。2)當△=b^2—4ac0,圖象與x軸交于兩點(diǎn)A(x,0)和B(x,0),其中的x1,x2是一元二次方程ax^2+bx+c=

 。╝0)的兩根、這兩點(diǎn)間的距離AB=|x—x|

  當△=0、圖象與x軸只有一個(gè)交點(diǎn);

  當△0、圖象與x軸沒(méi)有交點(diǎn)、當a0時(shí),圖象落在x軸的上方,x為任何實(shí)數時(shí),都有y0;當a0時(shí),圖象落在x軸的下方,x為任何實(shí)數時(shí),都有y0、

  5、拋物線(xiàn)y=ax^2+bx+c的最值:如果a0(a0),則當x= —b/2a時(shí),y最。ù螅┲=(4ac—b^2)/4a、

  頂點(diǎn)的橫坐標,是取得最值時(shí)的自變量值,頂點(diǎn)的縱坐標,是最值的取值、

  6、用待定系數法求二次函數的解析式

 。1)當題給條件為已知圖象經(jīng)過(guò)三個(gè)已知點(diǎn)或已知x、y的三對對應值時(shí),可設解析式為一般形式:

  y=ax^2+bx+c(a0)、

 。2)當題給條件為已知圖象的頂點(diǎn)坐標或對稱(chēng)軸時(shí),可設解析式為頂點(diǎn)式:y=a(x—h)^2+k(a0)、

 。3)當題給條件為已知圖象與x軸的兩個(gè)交點(diǎn)坐標時(shí),可設解析式為兩根式:y=a(x—x)(x—x)(a0)、

  7、二次函數知識很容易與其它知識綜合應用,而形成較為復雜的綜合題目。因此,以二次函數知識為主的綜合性題目是中考的熱點(diǎn)考題,往往以大題形式出現、

  反比例函數

  形如y=k/x(k為常數且k0)的函數,叫做反比例函數。

  自變量x的取值范圍是不等于0的一切實(shí)數。

  反比例函數圖像性質(zhì):

  反比例函數的圖像為雙曲線(xiàn)。

  由于反比例函數屬于奇函數,有f(—x)=—f(x),圖像關(guān)于原點(diǎn)對稱(chēng)。

  另外,從反比例函數的解析式可以得出,在反比例函數的圖像上任取一點(diǎn),向兩個(gè)坐標軸作垂線(xiàn),這點(diǎn)、兩個(gè)垂足及原點(diǎn)所圍成的矩形面積是定值,為∣k∣。

  如圖,上面給出了k分別為正和負(2和—2)時(shí)的函數圖像。

  當K0時(shí),反比例函數圖像經(jīng)過(guò)一,三象限,是減函數

  當K0時(shí),反比例函數圖像經(jīng)過(guò)二,四象限,是增函數

  反比例函數圖像只能無(wú)限趨向于坐標軸,無(wú)法和坐標軸相交。

  知識點(diǎn):

  1、過(guò)反比例函數圖象上任意一點(diǎn)作兩坐標軸的垂線(xiàn)段,這兩條垂線(xiàn)段與坐標軸圍成的矩形的面積為| k |。

  2、對于雙曲線(xiàn)y=k/x,若在分母上加減任意一個(gè)實(shí)數(即y=k/(xm)m為常數),就相當于將雙曲線(xiàn)圖象向左或右平移一個(gè)單位。(加一個(gè)數時(shí)向左平移,減一個(gè)數時(shí)向右平移)

  高中數學(xué)基本的知識點(diǎn)總結 13

  1、你掌握了空間圖形在平面上的直觀(guān)畫(huà)法嗎?(斜二測畫(huà)法)。

  2、線(xiàn)面平行和面面平行的定義、判定和性質(zhì)定理你掌握了嗎?線(xiàn)線(xiàn)平行、線(xiàn)面平行、面面平行這三者之間的聯(lián)系和轉化在解決立幾問(wèn)題中的應用是怎樣的?每種平行之間轉換的條件是什么?

  3、三垂線(xiàn)定理及其逆定理你記住了嗎?你知道三垂線(xiàn)定理的關(guān)鍵是什么嗎?(一面、四線(xiàn)、三垂直、立柱即面的垂線(xiàn)是關(guān)鍵)一面四直線(xiàn),立柱是關(guān)鍵,垂直三處見(jiàn)

  3、線(xiàn)面平行的判定定理和性質(zhì)定理在應用時(shí)都是三個(gè)條件,但這三個(gè)條件易混為一談;面面平行的判定定理易把條件錯誤地記為”一個(gè)平面內的兩條相交直線(xiàn)與另一個(gè)平面內的兩條相交直線(xiàn)分別平行”而導致證明過(guò)程跨步太大。

  4、求兩條異面直線(xiàn)所成的角、直線(xiàn)與平面所成的角和二面角時(shí),如果所求的角為90°,那么就不要忘了還有一種求角的方法即用證明它們垂直的方法。

  5、異面直線(xiàn)所成角利用“平移法”求解時(shí),一定要注意平移后所得角等于所求角(或其補角),特別是題目告訴異面直線(xiàn)所成角,應用時(shí)一定要從題意出發(fā),是用銳角還是其補角,還是兩種情況都有可能。

  6、你知道公式:和中每一字母的意思嗎?能夠熟練地應用它們解題嗎?

  7、兩條異面直線(xiàn)所成的角的范圍:0°《α≤90°

  直線(xiàn)與平面所成的角的范圍:0o≤α≤90°

  二面角的平面角的取值范圍:0°≤α≤180°

  8、你知道異面直線(xiàn)上兩點(diǎn)間的距離公式如何運用嗎?

  9、平面圖形的翻折,立體圖形的展開(kāi)等一類(lèi)問(wèn)題,要注意翻折,展開(kāi)前后有關(guān)幾何元素的“不變量”與“不變性”。

  10、立幾問(wèn)題的求解分為“作”,“證”,“算”三個(gè)環(huán)節,你是否只注重了“作”,“算”,而忽視了“證”這一重要環(huán)節?

  11、棱柱及其性質(zhì)、平行六面體與長(cháng)方體及其性質(zhì)。這些知識你掌握了嗎?(注意運用向量的方法解題)

  12、球及其性質(zhì);經(jīng)緯度定義易混。經(jīng)度為二面角,緯度為線(xiàn)面角、球面距離的求法;球的表面積和體積公式。

  高中數學(xué)基本的知識點(diǎn)總結 14

  (1)配方法:若函數為一元二次函數,則可以用這種方法求值域,關(guān)鍵在于正確化成完全平方式。

  (2)換元法:常用代數或三角代換法,把所給函數代換成值域容易確定的另一函數,從而得到原函數值域,如y=ax+b+_cx-d(a,b,c,d均為常數且ac不等于0)的函數常用此法求解。

  (3)判別式法:若函數為分式結構,且分母中含有未知數x,則常用此法。通常去掉分母轉化為一元二次方程,再由判別式△0,確定y的范圍,即原函數的值域

  (4)不等式法:借助于重要不等式a+bab(a0)求函數的值域。用不等式法求值域時(shí),要注意均值不等式的使用條件“一正,二定,三相等!

  (5)反函數法:若原函數的值域不易直接求解,則可以考慮其反函數的定義域,根據互為反函數的兩個(gè)函數定義域與值域互換的特點(diǎn),確定原函數的值域,如y=cx+d/ax+b(a0)型函數的值域,可采用反函數法,也可用分離常數法。

  (6)單調性法:首先確定函數的定義域,然后在根據其單調性求函數值域,常用到函數y=x+p/x(p0)的單調性:增區間為(-,-p)的左開(kāi)右閉區間和(p,+)的左閉右開(kāi)區間,減區間為(-p,0)和(0,p)

  (7)數形結合法:分析函數解析式表達的集合意義,根據其圖像特點(diǎn)確定值域。

  注意:

  (1)用換元法求值域時(shí),認真分析換元后變量的范圍變化;用判別式法求函數值域時(shí),一定要注意自變量x是否屬于R。

  (2)用不等式法求函數值域時(shí),需要認真分析其等號能否成立;利用單調性求函數值域時(shí),準確找出其單調區間是關(guān)鍵。分段函數的值域應分段分析,再取并集。

  (3)不管用哪種方法求函數值域,都一定要先確定其定義域,這是求函數的重要環(huán)節。

【高中數學(xué)基本的知識點(diǎn)總結】相關(guān)文章:

高中數學(xué)的基本知識點(diǎn)總結07-19

高中數學(xué)基本知識點(diǎn)總結9篇11-23

高中數學(xué)知識點(diǎn)總結02-20

高中數學(xué)幾何知識點(diǎn)總結10-31

高中數學(xué)知識點(diǎn)總結05-15

高中數學(xué)知識點(diǎn)總結04-23

高中數學(xué)知識點(diǎn)必修總結08-18

高中數學(xué)必修二知識點(diǎn)總結06-15

(實(shí)用)高中數學(xué)知識點(diǎn)總結05-15