成人免费看黄网站无遮挡,caowo999,se94se欧美综合色,a级精品九九九大片免费看,欧美首页,波多野结衣一二三级,日韩亚洲欧美综合

高中數學(xué)說(shuō)課稿

時(shí)間:2023-01-06 12:39:37 數學(xué)說(shuō)課稿 我要投稿

高中數學(xué)說(shuō)課稿【推薦】

  作為一位兢兢業(yè)業(yè)的人民教師,就有可能用到說(shuō)課稿,通過(guò)說(shuō)課稿可以很好地改正講課缺點(diǎn)。那么優(yōu)秀的說(shuō)課稿是什么樣的呢?下面是小編精心整理的高中數學(xué)說(shuō)課稿,僅供參考,歡迎大家閱讀。

高中數學(xué)說(shuō)課稿【推薦】

高中數學(xué)說(shuō)課稿1

  一、教材分析

  1.教材所處的地位和作用

  本節課所學(xué)內容為算法案例3,主要學(xué)習如何給一組數據排序,學(xué)習作程序框圖和設計程序,通過(guò)本節課的學(xué)習之后將能使許多復雜的問(wèn)題在計算機上得到解決,減少工作量。

  2 教學(xué)的重點(diǎn)和難點(diǎn)

  重點(diǎn):兩種排序法的排序步驟及計算機程序設計

  難點(diǎn):排序法的計算機程序設計

  二、教學(xué)目標分析

  1.知識與技能目標:

  掌握數據排序的原理能使用直接排序法與冒泡排序法給一組數據排序,進(jìn)而能設計冒泡排序法的程序框圖及程序,理解數學(xué)算法與計算機算法的區別,理解計算機對數學(xué)的輔助作用。

  2.過(guò)程與方法目標:

  能根據排序法中的直接插入排序法與冒泡排序法的步驟,了解數學(xué)計算轉換為計算機計算的途徑,從而探究計算機算法與數學(xué)算法的區別,體會(huì )計算機對數學(xué)學(xué)習的輔助作用。

  3.情感,態(tài)度和價(jià)值觀(guān)目標

  通過(guò)對排序法的學(xué)習,領(lǐng)會(huì )數學(xué)計算與計算機計算的區別,充分認識信息技術(shù)對數學(xué)的促進(jìn)。

  三、教學(xué)方法與手段分析

  1.教學(xué)方法:充分發(fā)揮學(xué)生的主體作用和教師的主導作用,采用啟發(fā)式,并遵循循序漸進(jìn)的教學(xué)原則。這有利于學(xué)生掌握從現象到本質(zhì),從已知到未知逐步形成概念的學(xué)習方法,有利于發(fā)展學(xué)生抽象思維能力和邏輯推理能力。

  2.教學(xué)手段:通過(guò)各種教學(xué)媒體(計算機)調動(dòng)學(xué)生參與課堂教學(xué)的主動(dòng)性與積極性。

  四、學(xué)法分析

  模仿排序法中數字排序的步驟,理解計算機計算的一般步驟,領(lǐng)會(huì )數學(xué)計算在計算機上實(shí)施的要求。

  五、教學(xué)過(guò)程分析

  一、創(chuàng )設情境

  提出問(wèn)題:大家考完試后如果要排一下成績(jì)的話(huà),單靠人手該怎樣操作呢?如果我們用計算機里的軟件電子表格對分數排序就非常簡(jiǎn)單,那么電子計算機是怎么對數據進(jìn)行排序的呢?

  通過(guò)這個(gè)問(wèn)題,引出我們這節課所要學(xué)習的兩種排序方法--直接插入排序法與冒泡排序法

  二、探索新知

  這里我先讓學(xué)生們閱讀課本P30-P31的內容,然后回答下面的問(wèn)題:

  (1)排序法中的直接插入排序法與冒泡排序法的步驟有什么區別?

  (2)冒泡法排序中對5個(gè)數字進(jìn)行排序最多需要多少趟?

  (3)在冒泡法排序對5個(gè)數字進(jìn)行排序的每一趟中需要比較大小幾次?

  提出問(wèn)題,然后讓學(xué)生們作出回答,這樣可以促使學(xué)生們能夠積極思考,自主地去學(xué)習新的知識,而不只是單向的由老師向學(xué)生灌輸。

  三、知識應用

  例1 用冒泡排序法對數據7,5,3,9,1從小到大進(jìn)行排序

 。ǜ鶕⻊倓偺釂(wèn)所總結的方法完成解題步驟)

  練習:寫(xiě)出用冒泡排序法對5個(gè)數據4,11,7,9,6排序的過(guò)程中每一趟排序的結果.

 。皶r(shí)將學(xué)到的知識應用,有利于知識的掌握)

  例2 設計冒泡排序法對5個(gè)數據進(jìn)行排序的程序框圖.

  (在之前所學(xué)習知識的基礎上畫(huà)出程序框圖,然后給出一個(gè)思考題)

  思考:直接插入排序法的程序框圖如何設計?可否把上述程序框圖轉化為程序?

 。ㄖ蟪鲆粋(gè)練習題,找出思考題的答案)

  練習:用直接插入排序法對例1中的數據從小到大排序,畫(huà)出程序框圖,并轉化為程序運行求出最終答案。

 。ㄟ@里可以使學(xué)生們領(lǐng)會(huì )數學(xué)計算與計算機計算的區別,充分認識信息技術(shù)對數學(xué)的促進(jìn)。)

  四、課堂小結:

  (1)數字排序法中的常見(jiàn)的兩種排序法直接插入排序法與冒泡排序法它們的排序步驟

  (2兩種排序法的計算機程序設計

  (3)注意循環(huán)語(yǔ)句的使用與算法的循環(huán)次數,對算法進(jìn)行改進(jìn)。

  通過(guò)小結使學(xué)生們對知識有一個(gè)系統的認識,突出重點(diǎn),抓住關(guān)鍵,培養概括能力。

高中數學(xué)說(shuō)課稿2

  尊敬的各位專(zhuān)家、評委:

  大家好!

  我是盧龍縣木井中學(xué)數學(xué)教師xx,我今天說(shuō)課的題目是:人教A版普通高中課程標準實(shí)驗教科書(shū) 數學(xué)必修5第一章第一節的第一課時(shí)《正弦定理》,依據新課程標準對教材的要求,結合我對教材的理解,我將從以下幾個(gè)方面說(shuō)明我的設計和構思。

  一、教材分析

  “解三角形”既是高中數學(xué)的基本內容,又有較強的應用性,在這次課程改革中,被保留下來(lái),并獨立成為一章。這部分內容從知識體系上看,應屬于三角函數這一章,從研究方法上看,也可以歸屬于向量應用的一方面。從某種意義講,這部分內容是用代數方法解決幾何問(wèn)題的典型內容之一。而本課“正弦定理”,作為單元的起始課,是在學(xué)生已有的三角函數及向量知識的基礎上,通過(guò)對三角形邊角關(guān)系作量化探究,發(fā)現并掌握正弦定理(重要的解三角形工具),通過(guò)這一部分內容的學(xué)習,讓學(xué)生從“實(shí)際問(wèn)題”抽象成“數學(xué)問(wèn)題”的建模過(guò)程中,體驗 “觀(guān)察——猜想——證明——應用”這一思維方法,養成大膽猜想、善于思考的品質(zhì)和勇于求真的精神。同時(shí)在解決問(wèn)題的過(guò)程中,感受數學(xué)的力量,進(jìn)一步培養學(xué)生對數學(xué)的學(xué)習興趣和“用數學(xué)”的意識。

  二、學(xué)情分析

  我所任教的學(xué)校是我縣一所農村普通中學(xué),大多數學(xué)生基礎薄弱,對“一些重要的數學(xué)思想和數學(xué)方法”的應用意識和技能還不高。但是,大多數學(xué)生對數學(xué)的興趣較高,比較喜歡數學(xué),尤其是象本節課這樣與實(shí)際生活聯(lián)系比較緊密的內容,相信學(xué)生能夠積極配合,有比較不錯的表現。

  三、教學(xué)目標

  1、知識和技能:在創(chuàng )設的問(wèn)題情境中,引導學(xué)生發(fā)現正弦定理的內容,推證正弦定理及簡(jiǎn)單運用正弦定理解決一些簡(jiǎn)單的解三角形問(wèn)題。

  過(guò)程與方法:學(xué)生參與解題方案的探索,嘗試應用觀(guān)察——猜想——證明——應用”等思想方法,尋求最佳解決方案,從而引發(fā)學(xué)生對現實(shí)世界的一些數學(xué)模型進(jìn)行思考。

  情感、態(tài)度、價(jià)值觀(guān):培養學(xué)生合情合理探索數學(xué)規律的數學(xué)思想方法,通過(guò)平面幾何、三角形函數、正弦定理、向量的數量積等知識間的聯(lián)系來(lái)體現事物之間的普遍聯(lián)系與辯證統一。同時(shí),通過(guò)實(shí)際問(wèn)題的探討、解決,讓學(xué)生體驗學(xué)習成就感,增強數學(xué)學(xué)習興趣和主動(dòng)性,鍛煉探究精神。樹(shù)立“數學(xué)與我有關(guān),數學(xué)是有用的,我要用數學(xué),我能用數學(xué)”的理念。

  2、教學(xué)重點(diǎn)、難點(diǎn)

  教學(xué)重點(diǎn):正弦定理的發(fā)現與證明;正弦定理的簡(jiǎn)單應用。

  教學(xué)難點(diǎn):正弦定理證明及應用。

  四、教學(xué)方法與手段

  為了更好的達成上面的教學(xué)目標,促進(jìn)學(xué)習方式的轉變,本節課我準備采用“問(wèn)題教學(xué)法”,即由教師以問(wèn)題為主線(xiàn)組織教學(xué),利用多媒體和實(shí)物投影儀等教學(xué)手段來(lái)激發(fā)興趣、突出重點(diǎn),突破難點(diǎn),提高課堂效率,并引導學(xué)生采取自主探究與相互合作相結合的學(xué)習方式參與到問(wèn)題解決的過(guò)程中去,從中體驗成功與失敗,從而逐步建立完善的認知結構。

  五、教學(xué)過(guò)程

  為了很好地完成我所確定的教學(xué)目標,順利地解決重點(diǎn),突破難點(diǎn),同時(shí)本著(zhù)貼近生活、貼近學(xué)生、貼近時(shí)代的原則,我設計了這樣的教學(xué)過(guò)程:

  (一)創(chuàng )設情景,揭示課題

  問(wèn)題1:寧靜的夜晚,明月高懸,當你仰望夜空,欣賞這美好夜色的時(shí)候,會(huì )不會(huì )想要知道:那遙不可及的月亮離我們究竟有多遠呢?

  1671年兩個(gè)法國天文學(xué)家首次測出了地月之間的距離大約為 385400km,你知道他們當時(shí)是怎樣測出這個(gè)距離的嗎?

  問(wèn)題2:在現在的高科技時(shí)代,要想知道某座山的高度,沒(méi)必要親自去量,只需水平飛行的飛機從山頂一過(guò)便可測出,你知道這是為什么嗎?還有,交通警察是怎樣測出正在公路上行駛的汽車(chē)的速度呢?要想解決這些問(wèn)題, 其實(shí)并不難,只要你學(xué)好本章內容即可掌握其原理。(板書(shū)課題《解三角形》)

  [設計說(shuō)明]引用教材本章引言,制造知識與問(wèn)題的沖突,激發(fā)學(xué)生學(xué)習本章知識的興趣。

  (二)特殊入手,發(fā)現規律

  問(wèn)題3:在初中,我們已經(jīng)學(xué)習了《銳角三角函數和解直角三角形》這一章,老師想試試你的實(shí)力,請你根據初中知識,解決這樣一個(gè)問(wèn)題。在Rt⊿ABC中sinA= ,sinB= ,sinC= ,由此,你能把這個(gè)直角三角形中的所有的邊和角用一個(gè)表達式表示出來(lái)嗎?

  引導啟發(fā)學(xué)生發(fā)現特殊情形下的正弦定理

  (三)類(lèi)比歸納,嚴格證明

  問(wèn)題4:本題屬于初中問(wèn)題,而且比較簡(jiǎn)單,不夠刺激,現在如果我為難為難你,讓你也當一回老師,如果有個(gè)學(xué)生把條件中的Rt⊿ABC不小心寫(xiě)成了銳角⊿ABC,其它沒(méi)有變,你說(shuō)這個(gè)結論還成立嗎?

  [設計說(shuō)明]此時(shí)放手讓學(xué)生自己完成,如果感覺(jué)自己解決有困難,學(xué)生也可以前后桌或同桌結組研究,鼓勵學(xué)生用不同的方法證明這個(gè)結論,在巡視的過(guò)程中讓不同方法的學(xué)生上黑板展示,如果沒(méi)有用向量的學(xué)生,教師引導提示學(xué)生能否用向量完成證明。

  問(wèn)題5:好根據剛才我們的研究,說(shuō)明這一結論在直角三角形和銳角三角形中都成立,于是,我們是否有了更為大膽的猜想,把條件中的銳角⊿ABC改為角鈍角⊿ABC,其它不變,這個(gè)結論仍然成立?我們光說(shuō)成立不行,必須有能力進(jìn)行嚴格的理論證明,你有這個(gè)能力嗎?下面我希望你能用實(shí)力告訴我,開(kāi)始。(啟發(fā)引導學(xué)生用多種方法加以研究證明,尤其是向量法,在下節余弦定理的證明中還要用,因此務(wù)必啟發(fā)學(xué)生用向量法完成證明。)

  [設計說(shuō)明] 放手給學(xué)生實(shí)踐的機會(huì )和時(shí)間,使學(xué)生真正的參與到問(wèn)題解決的過(guò)程中去,讓學(xué)生在學(xué)數學(xué)的實(shí)踐中去感悟和提高數學(xué)的思維方法和思維習慣。同時(shí),考慮到有部分同學(xué)基礎較差,考個(gè)人或小組可能無(wú)法完成探究任務(wù),教師在學(xué)生動(dòng)手的同時(shí),通過(guò)巡查,讓提前證明出結論的同學(xué)上黑板完成,這樣做一方面肯定了先完成的同學(xué)的先進(jìn)性,鍛煉了上黑板同學(xué)的解題過(guò)程的書(shū)寫(xiě)規范性,同時(shí),也讓從無(wú)從下手的同學(xué)有個(gè)參考,不至于閑呆著(zhù)浪費時(shí)間。

  問(wèn)題6:由此,你能否得到一個(gè)更一般的結論?你能用比較精煉的語(yǔ)言把它概括一下嗎?好,這就是我們這節課研究的主要內容,大名鼎鼎的正弦定理(此時(shí)板書(shū)課題并用紅色粉筆標示出正弦定理內容)

  教師講解:告訴大家,其實(shí)這個(gè)大名鼎鼎的正弦定理是由伊朗著(zhù)名的天文學(xué)家阿布爾─威發(fā)﹝940-998﹞首先發(fā)現與證明的。中亞細亞人阿爾比魯尼﹝973-1048﹞給三角形的正弦定理作出了一個(gè)證明。也有說(shuō)正弦定理的證明是13世紀的阿塞拜疆人納速拉丁在系統整理前人成就的基礎上得出的。不管怎樣,我們說(shuō)在1000年以前,人們就發(fā)現了這個(gè)充滿(mǎn)著(zhù)數學(xué)美的結論,不能不說(shuō)也是人類(lèi)數學(xué)史上的一個(gè)奇跡。老師希望21世紀的你能在今后的學(xué)習中也研究出一個(gè)被后人景仰的某某定理來(lái),到那時(shí)我也就成了數學(xué)家的老師了。當然,老師的希望能否變成現實(shí),就要看大家的了。

  [設計說(shuō)明] 通過(guò)本段內容的講解,滲透一些數學(xué)史的內容,對學(xué)生不僅有數學(xué)美得熏陶,更能激發(fā)學(xué)生學(xué)習科學(xué)文化知識的熱情。

  (四)強化理解,簡(jiǎn)單應用

  下面請大家看我們的教材2-3頁(yè)到例題1上邊,并自學(xué)解三角形定義。

  [設計說(shuō)明] 讓學(xué)生看看書(shū),放慢節奏,有利于學(xué)生消化和吸收剛才的內容,同時(shí)教師可以利用這段時(shí)間對個(gè)別學(xué)困生進(jìn)行輔導,以減少掉隊的同學(xué)數量,同時(shí)培養學(xué)生養成自覺(jué)看書(shū)的好習慣。

  我們學(xué)習了正弦定理之后,你覺(jué)得它有什么應用?在三角形中他能解決那些問(wèn)題呢? 我們先小試牛刀,來(lái)一個(gè)簡(jiǎn)單的問(wèn)題:

  問(wèn)題7:(教材例題1)⊿ABC中,已知A=30,B=75,a=40cm,解三角形。

  (本題簡(jiǎn)單,找兩位同學(xué)上黑板完成,其他同學(xué)在底下練習本上完成,同學(xué)可以小聲音討論,完成后教師根據學(xué)生實(shí)踐中發(fā)現的問(wèn)題給予必要的講評)

  [設計說(shuō)明] 充分給學(xué)生自己動(dòng)手的時(shí)間和機會(huì ),由于本題是唯一解,為將來(lái)學(xué)生感悟什么情況下三角形有唯一解創(chuàng )造條件。

  強化練習

  讓全體同學(xué)限時(shí)完成教材4頁(yè)練習第一題,找兩位同學(xué)上黑板。

  問(wèn)題8:(教材例題2)在⊿ABC中a=20cm,b=28cm,A=30,解三角形。

  [設計說(shuō)明]例題2較難,目的是使學(xué)生明確,利用正弦定理有兩種可能,同時(shí),引導學(xué)生對比例題1研究,在什么情況下解三角形有唯一解?為什么?對學(xué)有余力的同學(xué)鼓勵他們自學(xué)探究與發(fā)現教材8頁(yè)得內容:《解三角形的進(jìn)一步討論》

  (五)小結歸納,深化拓展

  1、正弦定理

  2、正弦定理的證明方法

  3、正弦定理的應用

  4、涉及的數學(xué)思想和方法。

  [設計說(shuō)明] 師生共同總結本節課的收獲的同時(shí),引導學(xué)生學(xué)會(huì )自己總結,讓學(xué)生進(jìn)一步回顧和體會(huì )知識的形成、發(fā)展、完善的過(guò)程。

  (六)布置作業(yè),鞏固提高

  1、教材10頁(yè)習題1.1A組第1題。

  2、學(xué)有余力的同學(xué)探究10頁(yè)B組第1題,體會(huì )正弦定理的其他證明方法。

  證明:設三角形外接圓的半徑是R,則a=2RsinA,b=2RsinB, c=2RsinC

  [設計說(shuō)明] 對不同水平的學(xué)生設計不同梯度的作業(yè),尊重學(xué)生的個(gè)性差異,有利于因材施教的教學(xué)原則的貫徹。

高中數學(xué)說(shuō)課稿3

  一、教材分析:

  1、教材的地位與作用:

  線(xiàn)性規劃是運籌學(xué)的一個(gè)重要分支,在實(shí)際生活中有著(zhù)廣泛的應用。本節內容是在學(xué)習了不等式、直線(xiàn)方程的基礎上,利用不等式和直線(xiàn)方程的有關(guān)知識展開(kāi)的,它是對二元一次不等式的深化和再認識、再理解。通過(guò)這一部分的學(xué)習,使學(xué)生進(jìn)一步了解數學(xué)在解決實(shí)際問(wèn)題中的應用,體驗數形結合和轉化的思想方法,培養學(xué)生學(xué)習數學(xué)的興趣、應用數學(xué)的意識和解決實(shí)際問(wèn)題的能力。

  2、教學(xué)重點(diǎn)與難點(diǎn):

  重點(diǎn):畫(huà)可行域;在可行域內,用圖解法準確求得線(xiàn)性規劃問(wèn)題的最優(yōu)解。

  難點(diǎn):在可行域內,用圖解法準確求得線(xiàn)性規劃問(wèn)題的最優(yōu)解。

  二、目標分析:

  在新課標讓學(xué)生經(jīng)歷“學(xué)數學(xué)、做數學(xué)、用數學(xué)”的理念指導下,本節課的教學(xué)目標分設為知識目標、能力目標和情感目標。

  知識目標:

  1、了解線(xiàn)性規劃的意義,了解線(xiàn)性約束條件、線(xiàn)性目標函數、可行解、可行

  域和最優(yōu)解等概念;

  2、理解線(xiàn)性規劃問(wèn)題的圖解法;

  3、會(huì )利用圖解法求線(xiàn)性目標函數的最優(yōu)解.

  能力目標:

  1、在應用圖解法解題的過(guò)程中培養學(xué)生的觀(guān)察能力、理解能力。

  2、在變式訓練的過(guò)程中,培養學(xué)生的分析能力、探索能力。

  3、在對具體事例的感性認識上升到對線(xiàn)性規劃的理性認識過(guò)程中,培養學(xué)生運用數形結合思想解題的能力和化歸能力。

  情感目標:

  1、讓學(xué)生體驗數學(xué)來(lái)源于生活,服務(wù)于生活,體驗數學(xué)在建設節約型社會(huì )中的作用,品嘗學(xué)習數學(xué)的樂(lè )趣。

  2、讓學(xué)生體驗數學(xué)活動(dòng)充滿(mǎn)著(zhù)探索與創(chuàng )造,培養學(xué)生勤于思考、勇于探索的精神;

  3、讓學(xué)生學(xué)會(huì )用運動(dòng)觀(guān)點(diǎn)觀(guān)察事物,了解事物之間從一般到特殊、從特殊到一般的辨證關(guān)系,滲透辯證唯物主義認識論的思想。

  三、過(guò)程分析:

  數學(xué)教學(xué)是數學(xué)活動(dòng)的教學(xué)。因此,我將整個(gè)教學(xué)過(guò)程分為以下六個(gè)教學(xué)環(huán)節:1、創(chuàng )設情境,提出問(wèn)題;2、分析問(wèn)題,形成概念;3、反思過(guò)程,提煉方法;4、變式演練,深入探究;5、運用新知,解決問(wèn)題;6、歸納總結,鞏固提高。

  1、創(chuàng )設情境,提出問(wèn)題:

  在課堂教學(xué)的開(kāi)始,我以一組生動(dòng)的動(dòng)畫(huà)(配圖片)描述出在神奇的數學(xué)王國里,有一種算法廣泛應用于工農業(yè)、軍事、交通運輸、決策管理與規劃等領(lǐng)域,應用它已節約了億萬(wàn)財富,還被列為20世紀對科學(xué)發(fā)展和工程實(shí)踐影響最大的十大算法之一。它為何有如此大的魅力?它又是怎樣的一種神奇算法呢?我以景激情,以情激思,點(diǎn)燃學(xué)生的求知欲,引領(lǐng)學(xué)生進(jìn)入學(xué)習情境。

高中數學(xué)說(shuō)課稿4

  一、教材分析

  本節知識是必修五第一章《解三角形》的第一節資料,與初中學(xué)習的三角形的邊和角的基本關(guān)系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時(shí)常有解三角形的問(wèn)題,并且解三角形和三角函數聯(lián)系在高考當中也時(shí)?家恍┙獯痤}。所以,正弦定理和余弦定理的知識十分重要。

  根據上述教材資料分析,研究到學(xué)生已有的認知結構心理特征及原有知識水平,制定如下教學(xué)目標:

  認知目標:在創(chuàng )設的問(wèn)題情境中,引導學(xué)生發(fā)現正弦定理的資料,推證正弦定理及簡(jiǎn)單運用正弦定理與三角形的內角和定理解斜三角形的兩類(lèi)問(wèn)題。

  本事目標:引導學(xué)生經(jīng)過(guò)觀(guān)察,推導,比較,由特殊到一般歸納出正弦定理,培養學(xué)生的創(chuàng )新意識和觀(guān)察與邏輯思維本事,能體會(huì )用向量作為數形結合的工具,將幾何問(wèn)題轉化為代數問(wèn)題。

  情感目標:面向全體學(xué)生,創(chuàng )造平等的教學(xué)氛圍,經(jīng)過(guò)學(xué)生之間、師生之間的交流、合作和評價(jià),調動(dòng)學(xué)生的主動(dòng)性和進(jìn)取性,給學(xué)生成功的體驗,激發(fā)學(xué)生學(xué)習的興趣。

  教學(xué)重點(diǎn):正弦定理的資料,正弦定理的證明及基本應用。

  教學(xué)難點(diǎn):正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時(shí)確定解的個(gè)數。

  二、教法

  根據教材的資料和編排的特點(diǎn),為是更有效地突出重點(diǎn),空破難點(diǎn),以學(xué)業(yè)生的發(fā)展為本,遵照學(xué)生的認識規律,本講遵照以教師為主導,以學(xué)生為主體,訓練為主線(xiàn)的指導思想,采用探究式課堂教學(xué)模式,即在教學(xué)過(guò)程中,在教師的啟發(fā)引導下,以學(xué)生獨立自主和合作交流為前提,以“正弦定理的發(fā)現”為基本探究資料,以生活實(shí)際為參照對象,讓學(xué)生的思維由問(wèn)題開(kāi)始,到猜想的得出,猜想的探究,定理的推導,并逐步得到深化。突破重點(diǎn)的手段:抓住學(xué)生情感的興奮點(diǎn),激發(fā)他們的興趣,鼓勵學(xué)生大膽猜想,進(jìn)取探索,以及及時(shí)地鼓勵,使他們知難而進(jìn)。另外,抓知識選擇的切入點(diǎn),從學(xué)生原有的認知水平和所需的知識特點(diǎn)入手,教師在學(xué)生主體下給以適當的提示和指導。突破難點(diǎn)的方法:抓住學(xué)生的本事線(xiàn)聯(lián)系方法與技能使學(xué)生較易證明正弦定理,另外經(jīng)過(guò)例題和練習來(lái)突破難點(diǎn)

  三、學(xué)法:

  指導學(xué)生掌握“觀(guān)察——猜想——證明——應用”這一思維方法,采取個(gè)人、小組、團體等多種解難釋疑的嘗試活動(dòng),將自我所學(xué)知識應用于對任意三角形性質(zhì)的探究。讓學(xué)生在問(wèn)題情景中學(xué)習,觀(guān)察,類(lèi)比,思考,探究,概括,動(dòng)手嘗試相結合,體現學(xué)生的主體地位,增強學(xué)生由特殊到一般的數學(xué)思維本事,構成了實(shí)事求是的科學(xué)態(tài)度,增強了鍥而不舍的求學(xué)精神。

  四、教學(xué)過(guò)程

  第一:創(chuàng )設情景,大概用2分鐘

  第二:實(shí)踐探究,構成概念,大約用25分鐘

  第三:應用概念,拓展反思,大約用13分鐘

 。ㄒ唬﹦(chuàng )設情境,布疑激趣

  “興趣是最好的教師”,如果一節課有個(gè)好的開(kāi)頭,那就意味著(zhù)成功了一半,本節課由一個(gè)實(shí)際問(wèn)題引入,“工人師傅的一個(gè)三角形的模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長(cháng)為1m,想修好這個(gè)零件,但他不明白AC和BC的長(cháng)度是多少好去截料,你能幫師傅這個(gè)忙嗎?”激發(fā)學(xué)生幫忙別人的熱情和學(xué)習的興趣,從而進(jìn)入今日的學(xué)習課題。

 。ǘ┨綄ぬ乩,提出猜想

  1.激發(fā)學(xué)生思維,從自身熟悉的特例(直角三角形)入手進(jìn)行研究,發(fā)現正弦定理。

  2.那結論對任意三角形都適用嗎?指導學(xué)生分小組用刻度尺、量角器、計算器等工具對一般三角形進(jìn)行驗證。

  3.讓學(xué)生總結實(shí)驗結果,得出猜想:

  在三角形中,角與所對的邊滿(mǎn)足關(guān)系

  這為下一步證明樹(shù)立信心,不斷的使學(xué)生對結論的認識從感性逐步上升到理性。

 。ㄈ┻壿嬐评,證明猜想

  1.強調將猜想轉化為定理,需要嚴格的理論證明。

  2.鼓勵學(xué)生經(jīng)過(guò)作高轉化為熟悉的直角三角形進(jìn)行證明。

  3.提示學(xué)生思考哪些知識能把長(cháng)度和三角函數聯(lián)系起來(lái),繼而思考向量分析層面,用數量積作為工具證明定理,體現了數形結合的數學(xué)思想。

  4.思考是否還有其他的方法來(lái)證明正弦定理,布置課后練習,提示,做三角形的外接圓構造直角三角形,或用坐標法來(lái)證明

 。ㄋ模w納總結,簡(jiǎn)單應用

  1.讓學(xué)生用文字敘述正弦定理,引導學(xué)生發(fā)現定理具有對稱(chēng)和諧美,提升對數學(xué)美的享受。

  2.正弦定理的資料,討論能夠解決哪幾類(lèi)有關(guān)三角形的問(wèn)題。

  3.運用正弦定理求解本節課引入的三角形零件邊長(cháng)的問(wèn)題。自我參與實(shí)際問(wèn)題的解決,能激發(fā)學(xué)生知識后用于實(shí)際的價(jià)值觀(guān)。

 。ㄎ澹┲v解例題,鞏固定理

  1.例1。在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.

  例1簡(jiǎn)單,結果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來(lái)解三角形。

  2.例2.在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.

  例2較難,使學(xué)生明確,利用正弦定理求角有兩種可能。要求學(xué)生熟悉掌握已知兩邊和其中一邊的對角時(shí)解三角形的各種情形。完了把時(shí)間交給學(xué)生。

 。┱n堂練習,提高鞏固

  1.在△ABC中,已知下列條件,解三角形.

  (1)A=45°,C=30°,c=10cm

  (2)A=60°,B=45°,c=20cm

  2.在△ABC中,已知下列條件,解三角形.

  (1)a=20cm,b=11cm,B=30°

  (2)c=54cm,b=39cm,C=115°

  學(xué)生板演,教師巡視,及時(shí)發(fā)現問(wèn)題,并解答。

 。ㄆ撸┬〗Y反思,提高認識

  經(jīng)過(guò)以上的研究過(guò)程,同學(xué)們主要學(xué)到了那些知識和方法?你對此有何體會(huì )?

  1.用向量證明了正弦定理,體現了數形結合的數學(xué)思想。

  2.它表述了三角形的邊與對角的正弦值的關(guān)系。

  3.定理證明分別從直角、銳角、鈍角出發(fā),運用分類(lèi)討論的思想。

 。◤膶(shí)際問(wèn)題出發(fā),經(jīng)過(guò)猜想、實(shí)驗、歸納等思維方法,最終得到了推導出正弦定理。我們研究問(wèn)題的突出特點(diǎn)是從特殊到一般,我們不僅僅收獲著(zhù)結論,并且整個(gè)探索過(guò)程我們也掌握了研究問(wèn)題的一般方法。在強調研究性學(xué)習方法,注重學(xué)生的主體地位,調動(dòng)學(xué)生進(jìn)取性,使數學(xué)教學(xué)成為數學(xué)活動(dòng)的教學(xué)。)

 。ò耍┤蝿(wù)后延,自主探究

  如果已知一個(gè)三角形的兩邊及其夾角,要求第三邊,怎樣辦?發(fā)現正弦定理不適用了,那么自然過(guò)渡到下一節資料,余弦定理。布置作業(yè),預習下一節資料。

高中數學(xué)說(shuō)課稿5

  一、教材分析

  集合概念及其基本理論,稱(chēng)為集合論,是近、現代數學(xué)的一個(gè)重要的基礎,一方面,許多重要的數學(xué)分支,都建立在集合理論的基礎上。另一方面,集合論及其所反映的數學(xué)思想,在越來(lái)越廣泛的領(lǐng)域種得到應用。

  本節課主要分為兩個(gè)部分,一是理解集合的定義及一些基本特征。二是掌握集合與元素之間的關(guān)系。

  二、教學(xué)目標

  1、學(xué)習目標

 。1)通過(guò)實(shí)例,了解集合的含義,體會(huì )元素與集合之間的關(guān)系以及理解“屬

  于”關(guān)系;

 。2)能選擇自然語(yǔ)言、圖形語(yǔ)言、集合語(yǔ)言(列舉法或描述法)描述不同的具體問(wèn)題,感受集合語(yǔ)言的意義和作用;

  2、能力目標

 。1)能夠把一句話(huà)一個(gè)事件用集合的方式表示出來(lái)。

 。2)準確理解集合與及集合內的元素之間的關(guān)系。

  3、情感目標

  通過(guò)本節的把實(shí)際事件用集合的方式表示出來(lái),從而培養數學(xué)敏感性,了 解到數學(xué)于生活中。

  三、教學(xué)重點(diǎn)與難點(diǎn)

  重點(diǎn) 集合的基本概念與表示方法;

  難點(diǎn) 運用集合的兩種常用表示方法———列舉法與描述法,正確表示一些簡(jiǎn)單的集合;

  四、教學(xué)方法

 。1)本課將采用探究式教學(xué),讓學(xué)生主動(dòng)去探索,激發(fā)學(xué)生的學(xué)習興趣。并分層教學(xué),這樣可顧及到全體學(xué)生,達到優(yōu)生得到培養,后進(jìn)生也有所收獲的效果;

 。2)學(xué)生在老師的引導下,通過(guò)閱讀教材,自主學(xué)習、思考、交流、討論和概括,從而完成本節課的教學(xué)目標。

  五、學(xué)習方法

 。1)主動(dòng)學(xué)習法:舉出例子,提出問(wèn)題,讓學(xué)生在獲得感性認識的同時(shí),

  教師層層深入,啟發(fā)學(xué)生積極思維,主動(dòng)探索知識,培養學(xué)生思維想象 的綜合能力。

 。2)反饋補救法:在練習中,注意觀(guān)察學(xué)生對學(xué)習的反饋情況,以實(shí)現“培

  優(yōu)扶差,滿(mǎn)足不同!

  六、教學(xué)思路

  具體的思路如下

  復習的引入:講一些集合的相關(guān)數學(xué)及相關(guān)數學(xué)家的經(jīng)歷故事!這可以讓學(xué)生更加了解數學(xué)史從何使學(xué)生對數學(xué)更加感興趣,有助于上課的效率!因為時(shí)間關(guān)系這里我就不說(shuō)相關(guān)數學(xué)史咯。

  一、 引入課題

  軍訓前學(xué)校通知:8月15日8點(diǎn),高一年段在體育館集合進(jìn)行軍訓動(dòng)員;試問(wèn)這個(gè)通知的對象是全體的高一學(xué)生還是個(gè)別學(xué)生?

  在這里,集合是我們常用的一個(gè)詞語(yǔ),我們感興趣的是問(wèn)題中某些特定(是高一而不是高二、高三)對象的總體,而不是個(gè)別的對象,為此,我們將學(xué)習一個(gè)新的概念——集合,即是一些研究對象的總體。

  二、 正體部分

  學(xué)生閱讀教材,并思考下列問(wèn)題:

 。1)集合有那些概念?

 。2)集合有那些符號?

 。3)集合中元素的特性是什么?

 。4)如何給集合分類(lèi)?

  (一)集合的有關(guān)概念

 。1)對象:我們可以感覺(jué)到的客觀(guān)存在以及我們思想中的事物或抽象符號,

  都可以稱(chēng)作對象.

 。2)集合:把一些能夠確定的不同的對象看成一個(gè)整體,就說(shuō)這個(gè)整體是由

  這些對象的全體構成的集合.

 。3)元素:集合中每個(gè)對象叫做這個(gè)集合的元素.

  集合通常用大寫(xiě)的拉丁字母表示,如A、B、C、??元素通常用小寫(xiě)的拉丁字母表示,如a、b、c、??

  1. 思考:課本P3的思考題,并再列舉一些集合例子和不能構成集合的例子,

  對學(xué)生的例子予以討論、點(diǎn)評,進(jìn)而講解下面的問(wèn)題。

  2、元素與集合的關(guān)系

 。1)屬于:如果a是集合A的元素,就說(shuō)a屬于A(yíng),記作a∈A。(舉例)集合A={2,3,4,6,9}a=2 因此我們知道 a∈A

 。2)不屬于:如果a不是集合A的元素,就說(shuō)a不屬于A(yíng),記作a?A

  要注意“∈”的方向,不能把a∈A顛倒過(guò)來(lái)寫(xiě). (舉例)

  集合A={3,4,6,9}a=2 因此我們知道a?A

  3、集合中元素的特性

 。1)確定性:給定一個(gè)集合,任何對象是不是這個(gè)集合的元素是確定的了.

 。2)互異性:集合中的元素一定是不同的.

 。3)無(wú)序性:集合中的元素沒(méi)有固定的順序.

  4、集合分類(lèi)

  根據集合所含元素個(gè)屬不同,可把集合分為如下幾類(lèi):

 。1)把不含任何元素的集合叫做空集Ф

 。2)含有有限個(gè)元素的集合叫做有限集

 。3)含有無(wú)窮個(gè)元素的集合叫做無(wú)限集

  注:應區分?,{?},{0},0等符號的含義

  5、常用數集及其表示方法

 。1)非負整數集(自然數集):全體非負整數的集合.記作N

 。2)正整數集:非負整數集內排除0的集.記作N*或N+

 。3)整數集:全體整數的集合.記作Z

 。4)有理數集:全體有理數的集合.記作Q

 。5)實(shí)數集:全體實(shí)數的集合.記作R

  注:(1)自然數集包括數0.

 。2)非負整數集內排除0的集.記作N*或N+,Q、Z、R等其它數集內排

  除0的集,也這樣表示,例如,整數集內排除0的集,表示成Z*

  (二)集合的表示方法

  我們可以用自然語(yǔ)言來(lái)描述一個(gè)集合,但這將給我們帶來(lái)很多不便,除此之外還常用列舉法和描述法來(lái)表示集合。

 。1) 列舉法:把集合中的元素一一列舉出來(lái),寫(xiě)在大括號內。

  如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},?;

  例1.(課本例1)

  思考2,引入描述法

  說(shuō)明:集合中的元素具有無(wú)序性,所以用列舉法表示集合時(shí)不必考慮元素的順序。

 。2) 描述法:把集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號{}內。 具體方法:在大括號內先寫(xiě)上表示這個(gè)集合元素的一般符號及取值(或變化)范圍,再畫(huà)一條豎線(xiàn),在豎線(xiàn)后寫(xiě)出這個(gè)集合中元素所具有的共同特征。

  如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形},?;

  例2.(課本例2)

  說(shuō)明:(課本P5最后一段)

  思考3:(課本P6思考) 強調:描述法表示集合應注意集合的代表元素

  {(x,y)|y= x2+3x+2}與 {y|y= x2+3x+2}不同,只要不引起誤解,集合的代表元素也可省略,例如:{整數},即代表整數集Z。

  辨析:這里的{ }已包含“所有”的意思,所以不必寫(xiě){全體整數}。下列寫(xiě)法{實(shí)數集},{R}也是錯誤的。

  說(shuō)明:列舉法與描述法各有優(yōu)點(diǎn),應該根據具體問(wèn)題確定采用哪種表示法,要注意,一般集合中元素較多或有無(wú)限個(gè)元素時(shí),不宜采用列舉法。

  (三)課堂練習(課本P6練習)

  三、 歸納小結與作業(yè)

  本節課從實(shí)例入手,非常自然貼切地引出集合與集合的概念,并且結合實(shí)例對集合的概念作了說(shuō)明,然后介紹了集合的常用表示方法,包括列舉法、描述法。

  書(shū)面作業(yè):習題1.1,第1- 4題

高中數學(xué)說(shuō)課稿6

  一、教材分析

  1、教材內容

  本節課是蘇教版第二章《函數概念和基本初等函數Ⅰ》§2。1。3函數簡(jiǎn)單性質(zhì)的第一課時(shí),該課時(shí)主要學(xué)習增函數、減函數的定義,以及應用定義解決一些簡(jiǎn)單問(wèn)題。

  2、教材所處地位、作用

  函數的性質(zhì)是研究函數的基石,函數的單調性是首先研究的一個(gè)性質(zhì)。通過(guò)對本節課的學(xué)習,讓學(xué)生領(lǐng)會(huì )函數單調性的概念、掌握證明函數單調性的步驟,并能運用單調性知識解決一些簡(jiǎn)單的實(shí)際問(wèn)題。通過(guò)上述活動(dòng),加深對函數本質(zhì)的認識。函數的單調性既是學(xué)生學(xué)過(guò)的函數概念的延續和拓展,又是后續研究指數函數、對數函數、三角函數的單調性的基礎。此外在比較數的大小、函數的定性分析以及相關(guān)的數學(xué)綜合問(wèn)題中也有廣泛的應用,它是整個(gè)高中數學(xué)中起著(zhù)承上啟下作用的核心知識之一。從方法論的角度分析,本節教學(xué)過(guò)程中還滲透了探索發(fā)現、數形結合、歸納轉化等數學(xué)思想方法。

  3、教學(xué)目標

 。1)知識與技能:使學(xué)生理解函數單調性的概念,掌握判別函數單調性

  的方法;

 。2)過(guò)程與方法:從實(shí)際生活問(wèn)題出發(fā),引導學(xué)生自主探索函數單調性的概念,應用圖象和單調性的定義解決函數單調性問(wèn)題,讓學(xué)生領(lǐng)會(huì )數形結合的數學(xué)思想方法,培養學(xué)生發(fā)現問(wèn)題、分析問(wèn)題、解決問(wèn)題的能力。

 。3)情感態(tài)度價(jià)值觀(guān):讓學(xué)生體驗數學(xué)的科學(xué)功能、符號功能和工具功能,培養學(xué)生直覺(jué)觀(guān)察、探索發(fā)現、科學(xué)論證的良好的數學(xué)思維品質(zhì)。

  4、重點(diǎn)與難點(diǎn)

  教學(xué)重點(diǎn)(1)函數單調性的概念;

 。2)運用函數單調性的定義判斷一些函數的單調性。

  教學(xué)難點(diǎn)(1)函數單調性的知識形成;

 。2)利用函數圖象、單調性的定義判斷和證明函數的單調性。

  二、教法分析與學(xué)法指導

  本節課是一節較為抽象的數學(xué)概念課,因此,教法上要注意:

  1、通過(guò)學(xué)生熟悉的實(shí)際生活問(wèn)題引入課題,為概念學(xué)習創(chuàng )設情境,拉近數學(xué)與現實(shí)的距離,激發(fā)了學(xué)生求知欲,調動(dòng)了學(xué)生主體參與的積極性。

  2、在運用定義解題的過(guò)程中,緊扣定義中的關(guān)鍵語(yǔ)句,通過(guò)學(xué)生的主體參與,逐個(gè)完成對各個(gè)難點(diǎn)的突破,以獲得各類(lèi)問(wèn)題的解決。

  3、在鼓勵學(xué)生主體參與的同時(shí),不可忽視教師的主導作用。具體體現在設問(wèn)、講評和規范書(shū)寫(xiě)等方面,要教會(huì )學(xué)生清晰的思維、嚴謹的推理,并成功地完成書(shū)面表達。

  4、采用投影儀、多媒體等現代教學(xué)手段,增大教學(xué)容量和直觀(guān)性。

  在學(xué)法上:

  1、讓學(xué)生從問(wèn)題中質(zhì)疑、嘗試、歸納、總結、運用,培養學(xué)生發(fā)現問(wèn)題、研究問(wèn)題和解決問(wèn)題的能力。

  2、讓學(xué)生利用圖形直觀(guān)啟迪思維,并通過(guò)正、反例的構造,來(lái)完成從感性認識到理性思維的一個(gè)飛躍。

  三、 教學(xué)過(guò)程

  教學(xué)

  環(huán)節

  教 學(xué) 過(guò) 程

  設 計 意 圖

  問(wèn)題

  情境

 。úシ胖醒腚娨暸_天氣預報的音樂(lè ))

  滿(mǎn)足在定義域上的單調性的討論。

  2、重視學(xué)生發(fā)現的過(guò)程。如:充分暴露學(xué)生將函數圖象(形)的特征轉化為函數值(數)的特征的思維過(guò)程;充分暴露在正、反兩個(gè)方面探討活動(dòng)中,學(xué)生認知結構升華、發(fā)現的過(guò)程。

  3、重視學(xué)生的動(dòng)手實(shí)踐過(guò)程。通過(guò)對定義的解讀、鞏固,讓學(xué)生動(dòng)手去實(shí)踐運用定義。

  4、重視課堂問(wèn)題的設計。通過(guò)對問(wèn)題的設計,引導學(xué)生解決問(wèn)題。

高中數學(xué)說(shuō)課稿7

  一、地位作用

  數列是高中數學(xué)重要的內容之一,等比數列是在學(xué)習了等差數列后新的一種特殊數列,在生活中如儲蓄、分期付款等應用較為廣泛,在整個(gè)高中數學(xué)內容中數列與已學(xué)過(guò)的函數及后面的數列極限有密切聯(lián)系,它也是培養學(xué)生數學(xué)能力的良好題材,它可以培養學(xué)生的觀(guān)察、分析、歸納、猜想及綜合解決問(wèn)題的能力。

  基于此,設計本節的數學(xué)思路上:

  利用類(lèi)比的思想,聯(lián)系等差數列的概念及通項公式的學(xué)習方法,采取自學(xué)、引導、歸納、猜想、類(lèi)比總結的教學(xué)思路,充分發(fā)揮學(xué)生主觀(guān)能動(dòng)性,調動(dòng)學(xué)生的主體地位,充分體現教為主導、學(xué)為主體、練為主線(xiàn)的教學(xué)思想。

  二、教學(xué)目標

  知識目標:1)理解等比數列的概念

  2)掌握等比數列的通項公式

  3)并能用公式解決一些實(shí)際問(wèn)題

  能力目標:培養學(xué)生觀(guān)察能力及發(fā)現意識,培養學(xué)生運用類(lèi)比思想、解決分析問(wèn)題的能力。

  三、教學(xué)重點(diǎn)

  1)等比數列概念的理解與掌握 關(guān)鍵:是讓學(xué)生理解“等比”的特點(diǎn)

  2)等比數列的通項公式的推導及應用

  四、教學(xué)難點(diǎn)

  “等比”的理解及利用通項公式解決一些問(wèn)題。

  五、教學(xué)過(guò)程設計

  (一)預習自學(xué)環(huán)節。(8分鐘)

  首先讓學(xué)生重新閱讀課本105頁(yè)國際象棋發(fā)明者的故事,并出示預習提綱,要求學(xué)生閱讀課本P122至P123例1上面。

  回答下列問(wèn)題

  1)課本中前3個(gè)實(shí)例有什么特點(diǎn)?能否舉出其它例子,并給出等比數列的定義。

  2)觀(guān)察以下幾個(gè)數列,回答下面問(wèn)題:

  1, , , ,……

 。1,-2,-4,-8……

  1,2,-4,8……

 。1,-1,-1,-1,……

  1,0,1,0……

 、儆心膸讉(gè)是等比數列?若是公比是什么?

 、诠萹為什么不能等于零?首項能為零嗎?

 、酃萹=1時(shí)是什么數列?

 、躴>0時(shí)數列遞增嗎?q<0時(shí)遞減嗎?

  3)怎樣推導等比數列通項公式?課本中采取了什么方法?還可以怎樣推導?

  4)等比數列通項公式與函數關(guān)系怎樣?

  (二)歸納主導與總結環(huán)節(15分鐘)

  這一環(huán)節主要是通過(guò)學(xué)生回答為主體,教師引導總結為主線(xiàn)解決本節兩個(gè)重點(diǎn)內容。

  通過(guò)回答問(wèn)題(1)(2)給出等比數列的定義并強調以下幾點(diǎn):①定義關(guān)鍵字“第二項起”“常數”;

 、谝龑W(xué)生用數學(xué)語(yǔ)言表達定義: =q(n≥2);③q=1時(shí)為非零常數數列,既是等差數列又是等比數列。引申:若數列公比為字母,分q=1和q≠1兩種情況;引入分類(lèi)討論的思想。

 、躴>0時(shí)等比數列單調性不定,q<0為擺動(dòng)數列,類(lèi)比等差數列d>0為遞增數列,d<0為遞減數列。

  通過(guò)回答問(wèn)題(3)回憶等差數列的推導方法,比較兩個(gè)數列定義的不同,引導推出等比數列通項公式。

  法一:歸納法,學(xué)會(huì )從特殊到一般的方法,并從次數中發(fā)現規律,培養觀(guān)察力。

  法二:迭乘法,聯(lián)系等差數列“迭加法”,培養學(xué)生類(lèi)比能力及新舊知識轉化能力。

高中數學(xué)說(shuō)課稿8

  教材地位及作用

  本節課是高中數學(xué)3(必修)第三章概率的第二節古典概型的第一課時(shí),是在隨機事件的概率之后,幾何概型之前,尚未學(xué)習排列組合的情況下教學(xué)的。古典概型是一種特殊的數學(xué)模型,也是一種最基本的概率模型,在概率論中占有相當重要的地位。

  學(xué)好古典概型可以為其它概率的學(xué)習奠定基礎,同時(shí)有利于理解概率的概念,有利于計算一些事件的概率,有利于解釋生活中的一些問(wèn)題。

  教學(xué)重點(diǎn)

  理解古典概型的概念及利用古典概型求解隨機事件的概率。

  根據本節課的地位和作用以及新課程標準的具體要求,制訂教學(xué)重點(diǎn)。

  教學(xué)難點(diǎn)

  如何判斷一個(gè)試驗是否是古典概型,分清在一個(gè)古典概型中某隨機事件包含的基本事件的個(gè)數和試驗中基本事件的總數。

  根據本節課的內容,即尚未學(xué)習排列組合,以及學(xué)生的心理特點(diǎn)和認知水平,制定了教學(xué)難點(diǎn)。

  教學(xué)目標

  1.知識與技能

 。1)理解古典概型及其概率計算公式,

 。2)會(huì )用列舉法計算一些隨機事件所含的基本事件數及事件發(fā)生的概率。

  2.過(guò)程與方法

  根據本節課的內容和學(xué)生的實(shí)際水平,通過(guò)模擬試驗讓學(xué)生理解古典概型的特征:試驗結果的有限性和每一個(gè)試驗結果出現的等可能性,觀(guān)察類(lèi)比各個(gè)試驗,歸納總結出古典概型的概率計算公式,體現了化歸的重要思想,掌握列舉法,學(xué)會(huì )運用數形結合、分類(lèi)討論的思想解決概率的計算問(wèn)題。

  3.情感態(tài)度與價(jià)值觀(guān)

  概率教學(xué)的核心問(wèn)題是讓學(xué)生了解隨機現象與概率的意義,加強與實(shí)際生活的聯(lián)系,以科學(xué)的態(tài)度評價(jià)身邊的一些隨機現象。適當地增加學(xué)生合作學(xué)習交流的機會(huì ),盡量地讓學(xué)生自己舉出生活和學(xué)習中與古典概型有關(guān)的實(shí)例。使得學(xué)生在體會(huì )概率意義的同時(shí),感受與他人合作的重要性以及初步形成實(shí)事求是地科學(xué)態(tài)度和鍥而不舍的求學(xué)精神。

  根據新課程標準,并結合學(xué)生心理發(fā)展的需求,以及人格、情感、價(jià)值觀(guān)的具體要求制訂而成。這對激發(fā)學(xué)生學(xué)好數學(xué)概念,養成數學(xué)習慣,感受數學(xué)思想,提高數學(xué)能力起到了積極的作用。

  教學(xué)過(guò)程分析

  一,提出問(wèn)題引入新課

  在課前,教師布置任務(wù),以數學(xué)小組為單位,完成下面兩個(gè)模擬試驗:

  試驗一:拋擲一枚質(zhì)地均勻的硬幣,分別記錄"正面朝上"和"反面朝上"的次數,要求每個(gè)數學(xué)小組至少完成20次(最好是整十數),最后由科代表匯總;

  試驗二:拋擲一枚質(zhì)地均勻的骰子,分別記錄"1點(diǎn)"、"2點(diǎn)"、"3點(diǎn)"、"4點(diǎn)"、"5點(diǎn)"和"6點(diǎn)"的次數,要求每個(gè)數學(xué)小組至少完成60次(最好是整十數),最后由科代表匯總。

  在課上,學(xué)生展示模擬試驗的操作方法和試驗結果,并與同學(xué)交流活動(dòng)感受。

  教師最后匯總方法、結果和感受,并提出問(wèn)題?

  1.用模擬試驗的方法來(lái)求某一隨機事件的概率好不好?為什么?

  不好,要求出某一隨機事件的概率,需要進(jìn)行大量的試驗,并且求出來(lái)的結果是頻率,而不是概率。

  2.根據以前的學(xué)習,上述兩個(gè)模擬試驗的每個(gè)結果之間都有什么特點(diǎn)?

  學(xué)生展示模擬試驗的操作方法和試驗結果,并與同學(xué)交流活動(dòng)感受,教師最后匯總方法、結果和感受,并提出問(wèn)題。

  通過(guò)課前的模擬實(shí)驗的展示,讓學(xué)生感受與他人合作的重要性,培養學(xué)生運用數學(xué)語(yǔ)言的能力。隨著(zhù)新問(wèn)題的提出,激發(fā)了學(xué)生的求知欲望,通過(guò)觀(guān)察對比,培養了學(xué)生發(fā)現問(wèn)題的能力。

  二,思考交流形成概念

  在試驗一中隨機事件只有兩個(gè),即"正面朝上"和"反面朝上",并且他們都是互斥的,由于硬幣質(zhì)地是均勻的,因此出現兩種隨機事件的可能性相等,即它們的概率都是;

  在試驗二中隨機事件有六個(gè),即"1點(diǎn)"、"2點(diǎn)"、"3點(diǎn)"、"4點(diǎn)"、"5點(diǎn)"和"6點(diǎn)",并且他們都是互斥的,由于骰子質(zhì)地是均勻的,因此出現六種隨機事件的可能性相等,即它們的概率都是。

  我們把上述試驗中的隨機事件稱(chēng)為基本事件,它是試驗的每一個(gè)可能結果。

  基本事件有如下的兩個(gè)特點(diǎn):

 。1)任何兩個(gè)基本事件是互斥的;

 。2)任何事件(除不可能事件)都可以表示成基本事件的和。

  特點(diǎn)(2)的理解:在試驗一中,必然事件由基本事件"正面朝上"和"反面朝上"組成;在試驗二中,隨機事件"出現偶數點(diǎn)"可以由基本事件"2點(diǎn)"、"4點(diǎn)"和"6點(diǎn)"共同組成。

  學(xué)生觀(guān)察對比得出兩個(gè)模擬試驗的相同點(diǎn)和不同點(diǎn),教師給出基本事件的概念,并對相關(guān)特點(diǎn)加以說(shuō)明,加深新概念的理解。

  讓學(xué)生從問(wèn)題的相同點(diǎn)和不同點(diǎn)中找出研究對象的對立統一面,這能培養學(xué)生分析問(wèn)題的能力,同時(shí)也教會(huì )學(xué)生運用對立統一的辯證唯物主義觀(guān)點(diǎn)來(lái)分析問(wèn)題的一種方法。

  三,思考交流形成概念

  例1從字母中任意取出兩個(gè)不同字母的試驗中,有哪些基本事件?

  分析:為了解基本事件,我們可以按照字典排序的順序,把所有可能的結果都列出來(lái)。利用樹(shù)狀圖可以將它們之間的關(guān)系列出來(lái)。

  我們一般用列舉法列出所有基本事件的結果,畫(huà)樹(shù)狀圖是列舉法的基本方法,一般分布完成的結果(兩步以上)可以用樹(shù)狀圖進(jìn)行列舉。

 。(shù)狀圖)

  解:所求的基本事件共有6個(gè):

  ,,,

  ,,

  觀(guān)察對比,發(fā)現兩個(gè)模擬試驗和例1的共同特點(diǎn):

  試驗一中所有可能出現的基本事件有"正面朝上"和"反面朝上"2個(gè),并且每個(gè)基本事件出現的可能性相等,都是;

  試驗二中所有可能出現的基本事件有"1點(diǎn)"、"2點(diǎn)"、"3點(diǎn)"、"4點(diǎn)"、"5點(diǎn)"和"6點(diǎn)"6個(gè),并且每個(gè)基本事件出現的可能性相等,都是;

  例1中所有可能出現的基本事件有"A"、"B"、"C"、"D"、"E"和"F"6個(gè),并且每個(gè)基本事件出現的可能性相等,都是;

  經(jīng)概括總結后得到:

  1,試驗中所有可能出現的基本事件只有有限個(gè);(有限性)

  2,每個(gè)基本事件出現的可能性相等。(等可能性)

  我們將具有這兩個(gè)特點(diǎn)的概率模型稱(chēng)為古典概率概型,簡(jiǎn)稱(chēng)古典概型。

  思考交流:

 。1)向一個(gè)圓面內隨機地投射一個(gè)點(diǎn),如果該點(diǎn)落在圓內任意一點(diǎn)都是等可能的,你認為這是古典概型嗎?為什么?

  答:不是古典概型,因為試驗的所有可能結果是圓面內所有的點(diǎn),試驗的所有可能結果數是無(wú)限的,雖然每一個(gè)試驗結果出現的"可能性相同",但這個(gè)試驗不滿(mǎn)足古典概型的第一個(gè)條件。

 。2)如圖,某同學(xué)隨機地向一靶心進(jìn)行射擊,這一試驗的結果只有有限個(gè):命中10環(huán)、命中9環(huán)。。。。。。命中5環(huán)和不中環(huán)。你認為這是古典概型嗎?為什么?

  答:不是古典概型,因為試驗的所有可能結果只有7個(gè),而命中10環(huán)、命中9環(huán)。。。。。。命中5環(huán)和不中環(huán)的出現不是等可能的,即不滿(mǎn)足古典概型的第二個(gè)條件。

  先讓學(xué)生嘗試著(zhù)列出所有的基本事件,教師再講解用樹(shù)狀圖列舉問(wèn)題的優(yōu)點(diǎn)。讓學(xué)生先觀(guān)察對比,找出兩個(gè)模擬試驗和例1的共同特點(diǎn),再概括總結得到的結論,教師最后補充說(shuō)明。學(xué)生互相交流,回答補充,教師歸納。將數形結合和分類(lèi)討論的思想滲透到具體問(wèn)題中來(lái)。由于沒(méi)有學(xué)習排列組合,因此用列舉法列舉基本事件的個(gè)數,不僅能讓學(xué)生直觀(guān)的感受到對象的總數,而且還能使學(xué)生在列舉的時(shí)候作到不重不漏。解決了求古典概型中基本事件總數這一難點(diǎn)。培養運用從具體到抽象、從特殊到一般的辯證唯物主義觀(guān)點(diǎn)分析問(wèn)題的能力,充分體現了數學(xué)的化歸思想。啟發(fā)誘導的同時(shí),訓練了學(xué)生觀(guān)察和概括歸納的能力。通過(guò)用表格列出相同和不同點(diǎn),能讓學(xué)生很好的理解古典概型。從而突出了古典概型這一重點(diǎn)。

  兩個(gè)問(wèn)題的設計是為了讓學(xué)生更加準確的把握古典概型的兩個(gè)特點(diǎn)。突破了如何判斷一個(gè)試驗是否是古典概型這一教學(xué)難點(diǎn)。

  四,觀(guān)察分析推導方程

  問(wèn)題思考:在古典概型下,基本事件出現的概率是多少?隨機事件出現的概率如何計算?

  分析:

  實(shí)驗一中,出現正面朝上的概率與反面朝上的'概率相等,即

  P("正面朝上")=P("反面朝上")

  由概率的加法公式,得

  P("正面朝上")+P("反面朝上")=P(必然事件)=1

  因此P("正面朝上")=P("反面朝上")=

  即試驗二中,出現各個(gè)點(diǎn)的概率相等,即

  P("1點(diǎn)")=P("2點(diǎn)")=P("3點(diǎn)")

 。絇("4點(diǎn)")=P("5點(diǎn)")=P("6點(diǎn)")

  反復利用概率的加法公式,我們有

  P("1點(diǎn)")+P("2點(diǎn)")+P("3點(diǎn)")+P("4點(diǎn)")+P("5點(diǎn)")+P("6點(diǎn)")=P(必然事件)=1

  所以P("1點(diǎn)")=P("2點(diǎn)")=P("3點(diǎn)")

 。絇("4點(diǎn)")=P("5點(diǎn)")=P("6點(diǎn)")=

  進(jìn)一步地,利用加法公式還可以計算這個(gè)試驗中任何一個(gè)事件的概率,例如,

  P("出現偶數點(diǎn)")=P("2點(diǎn)")+P("4點(diǎn)")+P("6點(diǎn)")=++==

  即根據上述兩則模擬試驗,可以概括總結出,古典概型計算任何事件的概率計算公式為:

  教師提出問(wèn)題,引導學(xué)生類(lèi)比分析兩個(gè)模擬試驗和例1的概率,先通過(guò)用概率加法公式求出隨機事件的概率,再對比概率結果,發(fā)現其中的聯(lián)系。

  鼓勵學(xué)生運用觀(guān)察類(lèi)比和從具體到抽象、從特殊到一般的辯證唯物主義方法來(lái)分析問(wèn)題,同時(shí)讓學(xué)生感受數學(xué)化歸思想的優(yōu)越性和這一做法的合理性,突出了古典概型的概率計算公式這一重點(diǎn)。

  提問(wèn):

 。1)在例1的實(shí)驗中,出現字母"d"的概率是多少?

  出現字母"d"的概率為:

  提問(wèn):

 。2)在使用古典概型的概率公式時(shí),應該注意什么?

  歸納:

  在使用古典概型的概率公式時(shí),應該注意:

 。1)要判斷該概率模型是不是古典概型;

 。2)要找出隨機事件A包含的基本事件的個(gè)數和試驗中基本事件的總數。除了畫(huà)樹(shù)狀圖,還有什么方法求基本事件的個(gè)數呢?

  教師提問(wèn),學(xué)生回答,加深對古典概型的概率計算公式的理解。

  深化對古典概型的概率計算公式的理解,也抓住了解決古典概型的概率計算的關(guān)鍵。

  四,例題分析推廣應用

  例2單選題是標準化考試中常用的題型,一般是從A,B,C,D四個(gè)選項中選擇一個(gè)正確答案。如果考生掌握了考差的內容,他可以選擇唯一正確的答案。假設考生不會(huì )做,他隨機的選擇一個(gè)答案,問(wèn)他答對的概率是多少?

  分析:

  解決這個(gè)問(wèn)題的關(guān)鍵,即討論這個(gè)問(wèn)題什么情況下可以看成古典概型。如果考生掌握或者掌握了部分考察內容,這都不滿(mǎn)足古典概型的第2個(gè)條件——等可能性,因此,只有在假定考生不會(huì )做,隨機地選擇了一個(gè)答案的情況下,才可以化為古典概型。

  解:

  這是一個(gè)古典概型,因為試驗的可能結果只有4個(gè):選擇A、選擇B、選擇C、選擇D,即基本事件共有4個(gè),考生隨機地選擇一個(gè)答案是選擇A,B,C,D的可能性是相等的。從而由古典概型的概率計算公式得:

  課后思考:

 。1)在標準化考試中既有單選題又有多選題,多選題是從A,B,C,D四個(gè)選項中選出所有正確的答案,同學(xué)們可能有一種感覺(jué),如果不知道正確答案,多選題更難猜對,這是為什么?

 。2)假設有20道單選題,如果有一個(gè)考生答對了17道題,他是隨機選擇的可能性大,還是他掌握了一定知識的可能性大?

  學(xué)生先思考再回答,教師對學(xué)生沒(méi)有注意到的關(guān)鍵點(diǎn)加以說(shuō)明。

  讓學(xué)生明確決概率的計算問(wèn)題的關(guān)鍵是:先要判斷該概率模型是不是古典概型,再要找出隨機事件A包含的基本事件的個(gè)數和試驗中基本事件的總數。

  鞏固學(xué)生對已學(xué)知識的掌握。

  例3同時(shí)擲兩個(gè)骰子,計算:

 。1)一共有多少種不同的結果?

 。2)其中向上的點(diǎn)數之和是5的結果有多少種?

 。3)向上的點(diǎn)數之和是5的概率是多少?

  解:(1)擲一個(gè)骰子的結果有6種,我們把兩個(gè)骰子標上記號1,2以便區分,由于1號骰子的結果都可以與2號骰子的任意一個(gè)結果配對,我們用一個(gè)"有序實(shí)數對"來(lái)表示組成同時(shí)擲兩個(gè)骰子的一個(gè)結果(如表),其中第一個(gè)數表示1號骰子的結果,第二個(gè)數表示2號骰子的結果。(可由列表法得到)

  由表中可知同時(shí)擲兩個(gè)骰子的結果共有36種。

 。2)在上面的結果中,向上的點(diǎn)數之和為5的結果有4種,分別為:

 。1,4),(2,3),(3,2),(4,1)

 。3)由于所有36種結果是等可能的,其中向上點(diǎn)數之和為5的結果(記為事件A)有4種,因此,由古典概型的概率計算公式可得

  先給出問(wèn)題,再讓學(xué)生完成,然后引導學(xué)生分析問(wèn)題,發(fā)現解答中存在的問(wèn)題。

  引導學(xué)生用列表來(lái)列舉試驗中的基本事件的總數。

  利用列表數形結合和分類(lèi)討論,既能形象直觀(guān)地列出基本事件的總數,又能做到列舉的不重不漏。深化鞏固對古典概型及其概率計算公式的理解,和用列舉法來(lái)計算一些隨機事件所含基本事件的個(gè)數及事件發(fā)生的概率。

  培養學(xué)生運用數形結合的思想,提高發(fā)現問(wèn)題、分析問(wèn)題、解決問(wèn)題的能力,增強學(xué)生數學(xué)思維情趣,形成學(xué)習數學(xué)知識的積極態(tài)度。

  五,探究思考鞏固深

  化問(wèn)題思考:為什么要把兩個(gè)骰子標上記號?如果不標記號會(huì )出現什么情況?你能解釋其中的原因嗎?

  如果不標上記號,類(lèi)似于(1,2)和(2,1)的結果將沒(méi)有區別。這時(shí),所有可能的結果將是:

 。1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,2)(2,3)(2,4)(2,5)(2,6)(3,3)(3,4)(3,5)(3,6)(4,4)(4,5)(4,6)(5,5)(5,6)(6,6)共有21種,和是5的結果有2個(gè),它們是(1,4)(2,3),所求的概率為

  這就需要我們考察兩種解法是否滿(mǎn)足古典概型的要求了。

  可以通過(guò)展示兩個(gè)不同的骰子所拋擲出來(lái)的點(diǎn),感受第二種方法構造的基本事件不是等可能事件,另外還可以利用Excel展示第二種方法中構造的21個(gè)基本事件不是等可能事件。從而加深印象,鞏固知識。

  要求學(xué)生觀(guān)察對比兩種結果,找出問(wèn)題產(chǎn)生的原因。

  通過(guò)觀(guān)察對比,發(fā)現兩種結果不同的根本原因是——研究的問(wèn)題是否滿(mǎn)足古典概型,從而再次突出了古典概型這一教學(xué)重點(diǎn),體現了學(xué)生的主體地位,逐漸養成自主探究能力。

  六,總結概括加深理解

  1.我們將具有

 。1)試驗中所有可能出現的基本事件只有有限個(gè);(有限性)

 。2)每個(gè)基本事件出現的可能性相等。(等可能性)

  這樣兩個(gè)特點(diǎn)的概率模型稱(chēng)為古典概率概型,簡(jiǎn)稱(chēng)古典概型。

  2.古典概型計算任何事件的概率計算公式

  3.求某個(gè)隨機事件A包含的基本事件的個(gè)數和實(shí)驗中基本事件的總數的常用方法是列舉法(畫(huà)樹(shù)狀圖和列表),應做到不重不漏。

  學(xué)生小結歸納,不足的地方老師補充說(shuō)明。

  使學(xué)生對本節課的知識有一個(gè)系統全面的認識,并把學(xué)過(guò)的相關(guān)知識有機地串聯(lián)起來(lái),便于記憶和應用,也進(jìn)一步升華了這節課所要表達的本質(zhì)思想,讓學(xué)生的認知更上一層。

  七,布置作業(yè)

  P123練習1、2題

  學(xué)生課后自主完成。

  進(jìn)一步讓學(xué)生掌握古典概型及其概率公式,并能夠學(xué)以致用,加深對本節課的理解。

  八,板書(shū)設計教法與學(xué)法分析教法分析

  根據本節課的特點(diǎn),采用引導發(fā)現和歸納概括相結合的教學(xué)方法,通過(guò)提出問(wèn)題、思考問(wèn)題、解決問(wèn)題等教學(xué)過(guò)程,觀(guān)察對比、概括歸納古典概型的概念及其概率公式,再通過(guò)具體問(wèn)題的提出和解決,來(lái)激發(fā)學(xué)生的學(xué)習興趣,調動(dòng)學(xué)生的主體能動(dòng)性,讓每一個(gè)學(xué)生充分地參與到學(xué)習活動(dòng)中來(lái)。

  學(xué)法分析

  學(xué)生在教師創(chuàng )設的問(wèn)題情景中,通過(guò)觀(guān)察、類(lèi)比、思考、探究、概括、歸納和動(dòng)手嘗試相結合,體現了學(xué)生的主體地位,培養了學(xué)生由具體到抽象,由特殊到一般的數學(xué)思維能力,形成了實(shí)事求是的科學(xué)態(tài)度,增強了鍥而不舍的求學(xué)精神。

  評價(jià)分析評價(jià)設計

  本節課的教學(xué)通過(guò)提出問(wèn)題,引導學(xué)生發(fā)現問(wèn)題,經(jīng)歷思考交流概括歸納后得出古典概型的概念,由兩個(gè)問(wèn)題的提出進(jìn)一步加深對古典概型的兩個(gè)特點(diǎn)的理解;再通過(guò)學(xué)生觀(guān)察類(lèi)比推導出古典概型的概率計算公式。這一過(guò)程能夠培養學(xué)生發(fā)現問(wèn)題、分析問(wèn)題、解決問(wèn)題的能力。

  在解決概率的計算上,教師鼓勵學(xué)生嘗試列表和畫(huà)出樹(shù)狀圖,讓學(xué)生感受求基本事件個(gè)數的一般方法,從而化解由于沒(méi)有學(xué)習排列組合而學(xué)習概率這一教學(xué)困惑。整個(gè)教學(xué)設計的順利實(shí)施,達到了教師的教學(xué)目標。

高中數學(xué)說(shuō)課稿9

  一、本節內容的地位與重要性

  "分類(lèi)計數原理與分步計數原理"是《高中數學(xué)》一節獨特內容。這一節課與排列、組合的基本概念有著(zhù)緊密的聯(lián)系,通過(guò)對這一節課的學(xué)習,既可以讓學(xué)生接受、理解分類(lèi)計數原理與分步計數原理,還為日后排列、組合和二項式定理的教學(xué)做好準備,起到奠基的重要作用。

  二、關(guān)于教學(xué)目標的確定

  根據兩個(gè)基本原理的地位和作用,我認為本節課的教學(xué)目標是:

 。1)使學(xué)生正確理解兩個(gè)基本原理的概念;

 。2)使學(xué)生能夠正確運用兩個(gè)基本原理分析、解決一些簡(jiǎn)單問(wèn)題;

 。3)提高分析、解決問(wèn)題的能力

 。4)使學(xué)生樹(shù)立"由個(gè)別到一般,由一般到個(gè)別"的認識事物的辯證唯物主義哲學(xué)思想觀(guān)點(diǎn)。

  三、關(guān)于教學(xué)重點(diǎn)、難點(diǎn)的選擇和處理

  中學(xué)數學(xué)課程中引進(jìn)的關(guān)于排列、組合的計算公式都是以?xún)蓚(gè)計數原理為基礎的,而一些較復雜的排列、組合應用題的求解,更是離不開(kāi)兩個(gè)基本原理,所以正確理解兩個(gè)基本原理并能解決實(shí)際問(wèn)題是學(xué)習本章的重點(diǎn)內容。

  正確使用兩個(gè)基本原理的前提是要學(xué)生清楚兩個(gè)基本原理使用的條件。而原理中提到的分步和分類(lèi),學(xué)生不是一下子就能理解深刻的,面對復雜的事物和現象學(xué)生對分類(lèi)和分步的選擇容易產(chǎn)生錯誤的認識,所以分類(lèi)計數原理和分步計數原理的準確應用是本節課的教學(xué)難點(diǎn)。必需使學(xué)生認清兩個(gè)基本原理的實(shí)質(zhì)就是完成一件事需要分類(lèi)還是分步,才能使學(xué)生接受概念并對如何運用這兩個(gè)基本原理有正確清楚的認識。教學(xué)中兩個(gè)基本問(wèn)題的引用及引伸,就是為突破難點(diǎn)做準備。

  四、關(guān)于教學(xué)方法和教學(xué)手段的選用

  根據本節課的內容及學(xué)生的實(shí)際水平,我采取啟發(fā)引導式教學(xué)方法并充分發(fā)揮電腦多媒體的輔助教學(xué)作用。

  啟發(fā)引導式作為一種啟發(fā)式教學(xué)方法,體現了認知心理學(xué)的基本理論。符合教學(xué)論中的自覺(jué)性和積極性、鞏固性、可接受性、教學(xué)與發(fā)展相結合、教師的主導作用與學(xué)生的主體地位相統一等原則,教學(xué)過(guò)程中,教師采用點(diǎn)撥的方法,啟發(fā)學(xué)生通過(guò)主動(dòng)思考、動(dòng)手操作來(lái)達到對知識的"發(fā)現"和接受,進(jìn)而完成知識的內化,使書(shū)本的知識成為自己的知識。

  電腦多媒體以聲音、動(dòng)畫(huà)、影像等多種形式強化對學(xué)生感觀(guān)的刺激,這一點(diǎn)是粉筆和黑板所不能比擬的,采取這種形式,可以極大提高學(xué)生的學(xué)習興趣,加大一堂課的信息容量,使教學(xué)目標更完美地體現。另外,電腦軟件具有良好的交互性,可以將教師的思路和策略以軟件的形式來(lái)體現,更好地為教學(xué)服務(wù)。

  五、關(guān)于學(xué)法的指導

  "授人以魚(yú),不如授人以漁",在教學(xué)過(guò)程中,不但要傳授學(xué)生課本知識,還要培養學(xué)生主動(dòng)觀(guān)察、主動(dòng)思考、自我發(fā)現的學(xué)習能力,增強學(xué)生的綜合素質(zhì),從而達到教學(xué)的目標。教學(xué)中,教師創(chuàng )設疑問(wèn),學(xué)生想辦法解決疑問(wèn),通過(guò)教師的啟發(fā)點(diǎn)撥,類(lèi)比推理,在積極的雙邊活動(dòng)中,學(xué)生找到了解決疑難的方法。整個(gè)過(guò)程貫穿"設疑"——"思索"——"發(fā)現"——"解惑"四個(gè)環(huán)節,學(xué)生隨時(shí)對所學(xué)知識產(chǎn)生有意注意,思想上經(jīng)歷了從肯定到否定、又從否定到肯定的辨證思維過(guò)程,符合學(xué)生認知水平,培養了學(xué)習能力。

  六、關(guān)于教學(xué)程序的設計

 。ㄒ唬┱n題導入

  這是本章的第一節課,是起始課,講起始課時(shí),把這一學(xué)科的內容作一個(gè)大概的介紹,能使學(xué)生從一開(kāi)始就對將要學(xué)習的知識有一個(gè)初步的了解,并為下面的學(xué)習打下思想基礎。所以,首先閱讀引言,明確任務(wù),激發(fā)興趣。由學(xué)生感興趣的乒乓球比賽提出問(wèn)題,引出學(xué)習本節的必要性,明確研究計數方法是本章內容的獨特性,從應用的廣泛看學(xué)習本章內容的重要性。同時(shí)板書(shū)課題(分類(lèi)計數原理與分步計數原理)

  這樣做,能使學(xué)生明白本節內容的地位和作用,激發(fā)其學(xué)習新知識的欲望,為順利完成教學(xué)任務(wù)做好思維上的準備。

 。ǘ┬抡n講授

  通過(guò)幻燈片給出問(wèn)題,配圖分析,講清坐火車(chē)與坐汽車(chē)兩類(lèi)方法均可,每類(lèi)中任一種辦法都可以獨立地把從甲地到乙地這件事辦好。

  緊跟著(zhù)給出:

  引申1:若甲地到乙地一天中還有4班輪船可乘,那么一天中,坐這些交通工具從甲地到一點(diǎn)共有多少種不同的走法?

  引伸2:若完成一件事,有 類(lèi)辦法。在第1類(lèi)辦法中有 種不同方法,在第2類(lèi)辦法中有 種不同的方法,……,在第 類(lèi)辦法中有 種不同方法,每一類(lèi)中的每一種方法均可完成這件事,那么完成這件事共有多少種不同方法?

  這個(gè)問(wèn)題的兩個(gè)引申由漸入深、循序漸進(jìn)為學(xué)生接受分類(lèi)計數原理做好了準備。

  板書(shū)分類(lèi)計數原理內容:

  完成一件事,有 類(lèi)辦法。在第1類(lèi)辦法中有 種不同方法,在第2類(lèi)辦法中有 種不同的方法,……,在第 類(lèi)辦法中有 種不同方法,那么完成這件事共有 種不同的方法。(也稱(chēng)加法原理)

  此時(shí),趁學(xué)生對于原理有了一個(gè)較清晰的認識,引導學(xué)生分析分類(lèi)計數原理內容,啟發(fā)總結得下面三點(diǎn)注意:(出示幻燈片)

 。1)各分類(lèi)之間相互獨立,都能完成這件事;

 。2)根據問(wèn)題的特點(diǎn)在確定的分類(lèi)標準下進(jìn)行分類(lèi);

 。3)完成這件事的任何一種方法必屬于某一類(lèi),并且分別屬于不同兩類(lèi)的兩種方法都是不同的方法。

  這樣做加深學(xué)生對分類(lèi)計數原理的正確理解,突出了重點(diǎn),突破了難點(diǎn)。

  接下來(lái)給出問(wèn)題2:(出示幻燈片)

  由A村去B村的道路有3條,由B村去C村的道路有2條(見(jiàn)圖9-1),從A村經(jīng)B村去C村,共有多少種不同的走法?

  提出問(wèn)題:?jiǎn)?wèn)題1與問(wèn)題2同是研究從甲地到乙地的不同走法,請找出這兩個(gè)問(wèn)題的不之處?學(xué)生會(huì )發(fā)現問(wèn)題1中采用乘火車(chē)或乘汽車(chē)都可以從甲地到乙地,而問(wèn)題2中必須經(jīng)過(guò)先乘火車(chē)后乘汽車(chē)兩個(gè)步驟才能完成從甲地到乙地這件事。

  問(wèn)題2的講授采用給出問(wèn)題,配圖分析,組織討論,強調分步。用多媒體配不同的顏色閃現出六種不同的走法,讓學(xué)生列式求出不同走法數,并列舉所有走法。

  歸納得出:分步計數原理(板書(shū)原理內容)

  分步計數原理:做一件事,完成它需要分成n個(gè)步驟,做第一步有m1種不同的方法,做第二步有m2種不同的方法,……,做第n步有mn種不同的方法。那么,完成這件事共有

  N=m1×m2×…×mn

  種不同的方法。

  同樣趁學(xué)生對定理有一定的認識,引導學(xué)生分析分步計數原理內容,啟發(fā)總結得下面三點(diǎn)注意:(出示幻燈片)

 。1) 各步驟相互依存,只有各個(gè)步驟完成了,這件事才算完成;

 。2) 根據問(wèn)題的特點(diǎn)在確定的分步標準下分步;

 。3) 分步時(shí)要注意滿(mǎn)足完成一件事必須并且只需連續完成這N個(gè)步驟這件事才算完成。

 。ㄈ⿷门e例

  教材例1:(書(shū)架取書(shū)問(wèn)題)引導學(xué)生分析解答,注意區分是分類(lèi)還是分步。

  例2:由數字0,1,2,3,4可以組成多少個(gè)三位整數(各位上的數字允許重復)?本題設置了4個(gè)問(wèn)題:

 。1) 每一個(gè)三位數是由什么構成的?(三個(gè)整數字)

 。2) 023是一個(gè)三位數嗎?(百位上不能是0)

 。3) 組成一個(gè)三位數需要怎么做?(分成三個(gè)步驟來(lái)完成:第一步確定百位上的數字;第二步確定十位上的數字;第三步確定個(gè)位上的數字)

 。4) 怎樣表述?

  教師巡視指導、并歸納

  解:要組成一個(gè)三位數,需要分成三個(gè)步驟:第一步確定百位上的數字,從1~4這4個(gè)數字中任選一個(gè)數字,有4種選法;第二步確定十位上的數字,由于數字允許重復,共有5種選法;第三步確定個(gè)位上的數字,仍有5種選法。根據分步計數原理,得到可以組成的三位整數的個(gè)數是N=4×5×5=100.

  答:可以組成100個(gè)三位整數。

 。ń處煹倪B續發(fā)問(wèn)、啟發(fā)、引導,幫助學(xué)生找到正確的解題思路和計算方法,使學(xué)生的分析問(wèn)題能力有所提高。

  教師在第二個(gè)例題中給出板書(shū)示范,能幫助學(xué)生進(jìn)一步加深對兩個(gè)基本原理實(shí)質(zhì)的理解,周密的考慮,準確的表達、規范的書(shū)寫(xiě),對于學(xué)生周密思考、準確表達、規范書(shū)寫(xiě)良好習慣的形成有著(zhù)積極的促進(jìn)作用,也可以為學(xué)生后面應用兩個(gè)基本原理解排列、組合綜合題打下基礎)

 。ㄋ模w納小結

  師:什么時(shí)候用分類(lèi)計數原理、什么時(shí)候用分步計數原理呢?

  生:分類(lèi)時(shí)用分類(lèi)計數原理,分步時(shí)用分步計數原理。

  師:應用兩個(gè)基本原理時(shí)需要注意什么呢?

  生:分類(lèi)時(shí)要求各類(lèi)辦法彼此之間相互排斥;分步時(shí)要求各步是相互獨立的。

 。ㄎ澹┱n堂練習

  P222:練習1~4.學(xué)生板演第4題

 。▽τ陬}4,教師有必要對三個(gè)多項式乘積展開(kāi)后各項的構成給以提示)

 。┎贾米鳂I(yè)

  P222:練習5,6,7.

  補充題:

  1.在所有的兩位數中,個(gè)位數字小于十位數字的共有多少個(gè)?

 。ㄌ崾荆喊词簧蠑底值拇笮】梢苑譃9類(lèi),共有9+8+7+…+2+1=45個(gè)個(gè)位數字小于十位數字的兩位數)

  2.某學(xué)生填報高考志愿,有m個(gè)不同的志愿可供選擇,若只能按第一、二、三志愿依次填寫(xiě)3個(gè)不同的志愿,求該生填寫(xiě)志愿的方式的種數。

 。ㄌ崾荆盒枰慈齻(gè)志愿分成三步。共有m(m-1)(m-2)種填寫(xiě)方式)

  3.在所有的三位數中,有且只有兩個(gè)數字相同的三位數共有多少個(gè)?

 。ㄌ崾荆嚎梢杂孟旅娣椒▉(lái)求解:(1)△△□,(2)△□△,(3)□△□,(1),(2),(3)類(lèi)中每類(lèi)都是9×9種,共有9×9+9×9+9×9=3×9×9=243個(gè)只有兩個(gè)數字相同的三位數)

  4.某小組有10人,每人至少會(huì )英語(yǔ)和日語(yǔ)中的一門(mén),其中8人會(huì )英語(yǔ),5人會(huì )日語(yǔ),(1)從中任選一個(gè)會(huì )外語(yǔ)的人,有多少種選法?(2)從中選出會(huì )英語(yǔ)與會(huì )日語(yǔ)的各1人,有多少種不同的選法?

 。ㄌ崾荆河捎8+5=13>10,所以10人中必有3人既會(huì )英語(yǔ)又會(huì )日語(yǔ)。(1)N=5+2+3;(2)N=5×2+5×3+2×3)

  只要大家用心學(xué)習,認真復習,就有可能在高中的戰場(chǎng)上考取自己理想的成績(jì)。

高中數學(xué)說(shuō)課稿10

  各位老師:

  大家好!

  我叫***,來(lái)自**。我說(shuō)課的題目是《簡(jiǎn)單隨機抽樣》,內容選自于新課程人教A版必修3第二章第一節,課時(shí)安排為一個(gè)課時(shí)。下面我將從教材分析、教學(xué)目標分析、教學(xué)方法與手段分析、和教學(xué)過(guò)程分析等四大方面來(lái)闡述我對這節課的分析和設計:

  一、教材分析

  1.教材所處的地位和作用

  "簡(jiǎn)單隨機抽樣"是"隨機抽樣"的基礎,"隨機抽樣"又是"統計學(xué)"的基礎,因此,在"統計學(xué)"中,"簡(jiǎn)單隨機抽樣"是基礎的基礎。在初中學(xué)生已學(xué)過(guò)相關(guān)概念,如"抽樣""總體"、"個(gè)體"、"樣本"、"樣本容量"等,具有一定基礎,新教材把"統計"這部分內容編入必修部分,突出了統計在日常生活中的應用,體現它在中學(xué)數學(xué)中的地位,但同時(shí)也給學(xué)生學(xué)習增加了難度。

  2教學(xué)的重點(diǎn)和難點(diǎn)

  重點(diǎn):掌握簡(jiǎn)單隨機抽樣常見(jiàn)的兩種方法(抽簽法、隨機數表法)

  難點(diǎn):理解簡(jiǎn)單隨機抽樣的科學(xué)性,以及由此推斷結論的可靠性

  二、教學(xué)目標分析

  1.知識與技能目標:

  正確理解隨機抽樣的概念,掌握抽簽法、隨機數表法的一般步驟;

  2.過(guò)程與方法目標:

 。1)能夠從現實(shí)生活或其他學(xué)科中提出具有一定價(jià)值的統計問(wèn)題;

 。2)在解決統計問(wèn)題的過(guò)程中,學(xué)會(huì )用簡(jiǎn)單隨機抽樣的方法從總體中抽取樣本。

  3.情感,態(tài)度和價(jià)值觀(guān)目標

  通過(guò)對現實(shí)生活和其他學(xué)科中統計問(wèn)題的提出,體會(huì )數學(xué)知識與現實(shí)世界及各學(xué)科知識之間的聯(lián)系,認識數學(xué)的重要性

  三、教學(xué)方法與手段分析

  為了充分讓學(xué)生自己分析、判斷、自主學(xué)習、合作交流。因此,我采用討論發(fā)現法教學(xué),并對學(xué)生滲透"從特殊到一般"的學(xué)習方法,由于本節課內容實(shí)例多,信息容量大,文字多,我采用多媒體輔助教學(xué),節省時(shí)間,提高教學(xué)效率,另外采用這種形式也可強化學(xué)生感觀(guān)刺激,也能大大提高學(xué)生的學(xué)習興趣。

  四、教學(xué)過(guò)程分析

 。ㄒ唬┰O置情境,提出問(wèn)題

  例1:請問(wèn)下列調查是"普查"還是"抽樣"調查?

  A、一鍋水餃的味道B、旅客上飛機前的安全檢查

  c、一批炮彈的殺傷半徑D、一批彩電的質(zhì)量情況

  E、美國總統的民意支持率

  學(xué)生討論后,教師指出生活中處處有"抽樣"

  「設計意圖」生活中處處有"抽樣"調查,明確學(xué)習"抽樣"的必要性。

 。ǘ┲鲃(dòng)探究,構建新知

  例2:語(yǔ)文老師為了了解某班同學(xué)對某首詩(shī)的背誦情況,應采用下列哪種抽查方式?為什么?

  A、在班級12名班委名單中逐個(gè)抽查5位同學(xué)進(jìn)行背誦

  B、在班級45名同學(xué)中逐一抽查10位同學(xué)進(jìn)行背誦

  先讓學(xué)生分析、選擇B后,師生一起歸納其特征:

 。1)不放回逐一抽樣,

 。2)抽樣有代表性(個(gè)體被抽到可能性相等),學(xué)生體驗B種抽樣的科學(xué)性后,教師指出這是簡(jiǎn)單隨機抽樣,并復習初中講過(guò)的有關(guān)概念,最后教師補充板書(shū)課題--(簡(jiǎn)單隨機)抽樣及其定義。

  「設計意圖」例2從正面分析簡(jiǎn)單隨機抽樣的科學(xué)性、公平性,突出"等可能性"特征。這是突破教學(xué)難點(diǎn)的重要環(huán)節之一。

  例3我們班有44名學(xué)生,現從中抽出5名學(xué)生去參加學(xué)生座談會(huì ),要使每名學(xué)生的機會(huì )均等,我們應該怎么做?談?wù)勀愕南敕ā?/p>

  先讓學(xué)生獨立思考,然后分小組合作學(xué)習,最后各小組推薦一位同學(xué)發(fā)言,最后師生一起歸納"抽簽法"步驟:

 。1)編號制簽

 。2)攪拌均勻

 。3)逐個(gè)不放回抽取n次。教師板書(shū)上面步驟。

  「設計意圖」在自主探究,合作交流中構建新知,體驗"抽簽法"的公平性,從而突破難點(diǎn),突出重點(diǎn)。

  請一位同學(xué)說(shuō)說(shuō)例2采用"抽簽法"的實(shí)施步驟。

  「設計意圖」

  1、反饋練習,落實(shí)知識點(diǎn),突出重點(diǎn)。

  2、體會(huì )"抽簽法"具有"簡(jiǎn)單、易行"的優(yōu)點(diǎn)。

  〈屏幕出示〉

  例4、假設我們要考察某公司生產(chǎn)的500克袋裝牛奶的質(zhì)量是否達標,現從800袋牛奶中抽取60袋進(jìn)行檢驗

  提問(wèn):這道題適合用抽簽法嗎?

  讓學(xué)生進(jìn)行思考,分析抽簽法的局限性,從而引入隨機數表法。教師出示一份隨機數表,并介紹隨機數表,強調數表上的數字都是隨機的,各個(gè)數字出現的可能性均等,結合上例讓學(xué)生討論隨機數表法的步驟,最后師生一起歸納步驟:

 。1)編號

 。2)在隨機數表上確定起始位置

 。3)取數。教師板書(shū)上面步驟。

  請一位同學(xué)說(shuō)說(shuō)例2采用"隨機數表法"的實(shí)施步驟。

  「設計意圖」

  1、體會(huì )隨機數表法的科學(xué)性

  2、體會(huì )隨機數表法的優(yōu)越性:避免制簽、攪拌。

  3、反饋練習,落實(shí)知識點(diǎn),突出重點(diǎn)。

 、缯n堂小結:

  1.簡(jiǎn)單隨機抽樣及其兩種方法

  2.兩種方法的操作步驟

 。ú捎脝(wèn)答形式)

  「設計意圖」通過(guò)小結使學(xué)生們對知識有一個(gè)系統的認識,突出重點(diǎn),抓住關(guān)鍵,培養概括能力。

 、璨贾米鳂I(yè)

  課本練習2、3

  [設計意圖]課后作業(yè)的布置是為了檢驗學(xué)生對本節課內容的理解和運用程度以及實(shí)際接受情況,并促使學(xué)生進(jìn)一步鞏固和掌握所學(xué)內容。

高中數學(xué)說(shuō)課稿11

  一、說(shuō)教材

  1、 教材的地位和作用

  《集合的概念》是人教版第一章的內容(中職數學(xué))。本節課的主要內容:集合以及集合有關(guān)的概念,元素與集合間的關(guān)系。初中數學(xué)課本中已現了一些數和點(diǎn)的集合,如:自然數的集合、有理數的集合、不等式解的集合等,但學(xué)生并不清楚“集合”在數學(xué)中的含義,集合是一個(gè)基礎性的概念,也是也是中職數學(xué)的開(kāi)篇,是我們后續學(xué)習的重要工具,如:用集合的語(yǔ)言表示函數的定義域、值域、方程與不等式的解集,曲線(xiàn)上點(diǎn)的集合等。通過(guò)本章節的學(xué)習,能讓學(xué)生領(lǐng)會(huì )到數學(xué)語(yǔ)言的簡(jiǎn)潔和準確性,幫助學(xué)生學(xué)會(huì )用集合的語(yǔ)言描述客觀(guān),發(fā)展學(xué)生運用數學(xué)語(yǔ)言交流的能力。

  2、 教學(xué)目標

 。1)知識目標:a、通過(guò)實(shí)例了解集合的含義,理解集合以及有關(guān)概念;

  b、初步體會(huì )元素與集合的“屬于”關(guān)系,掌握元素與集合關(guān)系的表示方法。

 。2)能力目標:a、讓學(xué)生感知數學(xué)知識與實(shí)際生活得密切聯(lián)系,培養學(xué)生解決實(shí)際的能力;

  b、學(xué)會(huì )借助實(shí)例分析,探究數學(xué)問(wèn)題,發(fā)展學(xué)生的觀(guān)察歸納能力。

 。3)情感目標:a、通過(guò)聯(lián)系生活,提高學(xué)生學(xué)習數學(xué)的積極性,形成積極的學(xué)習態(tài)度;

  b、通過(guò)主動(dòng)探究,合作交流,感受探索的樂(lè )趣和成功的體驗,體會(huì )數學(xué)的理性和嚴謹。

  3、重點(diǎn)和難點(diǎn)

  重點(diǎn):集合的概念,元素與集合的關(guān)系。

  難點(diǎn):準確理解集合的概念。

  二、學(xué)情分析(說(shuō)學(xué)情)

  對于中職生來(lái)說(shuō),學(xué)生的數學(xué)基礎相對薄弱,他們還沒(méi)具備一定的觀(guān)察、分析理解、解決實(shí)際問(wèn)題的能力,在運算能力、思維能力等方面參差不齊,學(xué)生學(xué)好數學(xué)的自信心不強,學(xué)習積極性不高,有厭學(xué)情緒。

  三、說(shuō)教法

  針對學(xué)生的實(shí)際情況,采用探究式教學(xué)法進(jìn)行教學(xué)。首先從學(xué)生較熟悉的實(shí)例出發(fā),提高學(xué)生的注意力和激發(fā)學(xué)生的學(xué)習興趣。在創(chuàng )設情境認知策略上給予適當的點(diǎn)撥和引導,引導學(xué)生主動(dòng)思、交流、討論,提出問(wèn)題。在此基礎上教師層層深入,啟發(fā)學(xué)生積極思維,逐步提升學(xué)生的數學(xué)學(xué)習能力。集合概念的形成遵循由感性到理性,由具體到抽象,便于學(xué)生的理解和掌握。

  四、學(xué)習指導(說(shuō)學(xué)法)

  教學(xué)的矛盾主要方面是學(xué)生的學(xué),學(xué)是中心,會(huì )學(xué)是目的,因此在教學(xué)中要不斷指導學(xué)生學(xué)會(huì )學(xué)習。根據數學(xué)的特點(diǎn)這節課主要是教學(xué)生動(dòng)腦思考、多訓練、勤鉆研的研討,這樣做增加了學(xué)生主動(dòng)參與的機會(huì ),增強了參與的意識,教學(xué)生獲取知識的途徑,思考問(wèn)題的方法,使學(xué)生成為教學(xué)的主體,進(jìn)而才能達到預期的教學(xué)目的和效果。

  五、教學(xué)過(guò)程

  1、引入新課:

  a、創(chuàng )設情境,揭示本課主題,同時(shí)對集合的整體性有個(gè)初步的感性認識。

  b、介紹集合論的創(chuàng )始者康托爾

  2、究竟什么是集合?(實(shí)例探究)切合學(xué)生現有的認知水平, 以學(xué)生熟悉的事物(物體),以實(shí)際生活為背景進(jìn)行探究, 為本課教學(xué)創(chuàng )造出一種自然和諧的氛圍,充分調動(dòng)學(xué)生的學(xué)習熱情接待探究過(guò)程學(xué)生積極思考、交流、作答,教師針對學(xué)生的回答啟發(fā),引導學(xué)生尋找實(shí)例中的共同特征,培養學(xué)生觀(guān)察,總結能力范圍由具體到抽象,由感性到理性,為下面水到渠成的介紹集合概念做好鋪墊。

  3、集合的概念,本課的重點(diǎn)。結合探究中的實(shí)例,讓學(xué)生說(shuō)出集合和元素各是什么?知識的呈現由抽象到具體進(jìn)一步熟悉元素與集合的概念,讓學(xué)生分清實(shí)際問(wèn)題中的集合和元素為后面學(xué)習兩者間的關(guān)系做好鋪墊。

  教師在這一環(huán)節做好學(xué)習指導,確定的對象組成的整體叫集合,如果對象不確定,就不能確定為集合(舉例)加深對概念的理解。

  4、 熟悉鞏固集合的概念通過(guò)例題,練習、幫助學(xué)生進(jìn)一步熟悉和理解集合的概念。

  5、 集合的符號記法,為本節重點(diǎn)做好鋪墊。

  6、 從實(shí)例入行手,探索元素和集合的關(guān)系,學(xué)生能用文字語(yǔ)言描述,如何用數學(xué)語(yǔ)言描述,給出元素與集合關(guān)系符號表示,在這個(gè)環(huán)節教師適當引導學(xué)生積極主動(dòng)參與到知識逐步形成過(guò)程,便于學(xué)生理解和掌握,落實(shí)本課的重點(diǎn),學(xué)習指導:⑴集合元素的確定。⑵理解兩符號的含義。

  7、 思考交流本課的重要環(huán)節在課堂上給學(xué)生提供充分的活動(dòng)時(shí)間和空間。通過(guò)自由舉例,能深化概念。同時(shí)還能提升學(xué)生的分析能力表達自己見(jiàn)解的能力。

  8、 從所舉的例子中抽象出數集的概念,并給出常見(jiàn)數集的記法。

  9、 學(xué)生練習:通過(guò)練習,識記常見(jiàn)數集的記法,同時(shí)進(jìn)一步鞏固元素與集合間的關(guān)系。

  10、知識的實(shí)際應用:

  問(wèn)題不難,落實(shí)課本能力目標,培養學(xué)生運用數學(xué)的意識和能力初步培養學(xué)生應用集合的眼光觀(guān)看世界。

  11、課堂小節

  以學(xué)生小節為主教師幫助為輔,鞏固所學(xué)知識,幫助學(xué)生認識到要學(xué)會(huì )梳理所學(xué)內容,要學(xué)會(huì )總結反思,使學(xué)生的認識進(jìn)一步升華,培養學(xué)生的鬼納總結能力。

  六、評價(jià)

  教學(xué)評價(jià)的及時(shí)能有效調動(dòng)課堂氣氛,感染學(xué)生的情緒,對課堂教學(xué)發(fā)揮著(zhù)積極作用,教學(xué)過(guò)程遵重學(xué)生之間的差異培養學(xué)生應用集合的眼光看研究對象,注重過(guò)程評價(jià)與多元評價(jià)將教學(xué)評價(jià)貫穿于本堂課的每個(gè)教學(xué)環(huán)節。

  七、教學(xué)反思

  1、 通過(guò)現實(shí)生活中的實(shí)例,從特殊到一般,在具體感知基礎上得出集合的描述概念,便于學(xué)生理解接受。

  2、 啟發(fā)探究教學(xué),營(yíng)造學(xué)生的學(xué)習氛圍,培養學(xué)生自主學(xué)習,合作交流的能力。

  八、板書(shū)設計

高中數學(xué)說(shuō)課稿12

  一、說(shuō)教材

 。1)說(shuō)教材的內容和地位

  本次說(shuō)課的內容是人教版高一數學(xué)必修一第一單元第一節《集合》(第一課時(shí))。集合這一課里,首先從初中代數與幾何涉及的集合實(shí)例入手,引出集合與集合的元素的概念,并且結合實(shí)例對集合的概念作了說(shuō)明。然后,介紹了集合的常用表示方法,集合元素的特征以及常用集合的表示。把集合的初步知識安排在高中數學(xué)的最開(kāi)始,是因為在高中數學(xué)中,這些知識與其他內容有著(zhù)密切聯(lián)系,它們是學(xué)習、掌握以及使用數學(xué)語(yǔ)言的基礎。從知識結構上來(lái)說(shuō)是為了引入函數的定義。因此在高中數學(xué)的模塊中,集合就顯得格外的舉足輕重了。

 。2)說(shuō)教學(xué)目標

  根據教材結構和內容以及教材地位和作用,考慮到學(xué)生已有的認知結構與心理特征,依據新課標制定如下教學(xué)目標:

  1.知識與技能:掌握集合的基本概念及表示方法。了解"屬于"關(guān)系的意義,掌握集合元素的特征。

  2.過(guò)程與方法:通過(guò)情景設置提出問(wèn)題,揭示課題,培養學(xué)生主動(dòng)探究新知的習慣。并通過(guò)"自主、合作與探究"實(shí)現"一切以學(xué)生為中心"的理念。

  3.情感態(tài)度與價(jià)值觀(guān):感受數學(xué)的人文價(jià)值,提高學(xué)生的學(xué)習數學(xué)的興趣,由集合的學(xué)習感受數學(xué)的簡(jiǎn)潔美與和諧統一美。同時(shí)通過(guò)自主探究領(lǐng)略獲取新知識的喜悅。

 。3)說(shuō)教學(xué)重點(diǎn)和難點(diǎn)

  依據課程標準和學(xué)生實(shí)際,我確定本課的教學(xué)重點(diǎn)為

  教學(xué)重點(diǎn):集合的基本概念及元素特征。

  教學(xué)難點(diǎn):掌握集合元素的三個(gè)特征,體會(huì )元素與集合的屬于關(guān)系。

  二、說(shuō)教法和學(xué)法

  接下來(lái)則是說(shuō)教法、學(xué)法

  教法與學(xué)法是互相聯(lián)系和統一的,不能孤立去研究。什么樣的教法必帶來(lái)相應的學(xué)法,以遵循啟發(fā)性原則為出發(fā)點(diǎn),就本節課而言,我采用"生活實(shí)例與數學(xué)實(shí)例"相結合,"師生互動(dòng)與課堂布白"相輔助的方法。通過(guò)不同層次的練習體驗,憑借有趣、實(shí)用的教學(xué)手段,突出重點(diǎn),突破難點(diǎn)。然而,學(xué)生是學(xué)習的主人,以學(xué)生為主體,創(chuàng )造條件讓學(xué)生參與探究活動(dòng),()不僅提高了學(xué)生探究能力,更讓學(xué)生獲得學(xué)習的技能和激發(fā)學(xué)生的學(xué)習興趣。因此,本次活動(dòng)采用的學(xué)法有自主探究、觀(guān)察發(fā)現、合作交流、歸納總結等。

  總之,不管采取什么教法和學(xué)法,每節課都應不斷研究學(xué)生的學(xué)習心理機制,不斷優(yōu)化教師本身的教學(xué)行為,自始至終以學(xué)生為主體,為學(xué)生創(chuàng )造和諧的課堂氛圍。

  三、說(shuō)教學(xué)過(guò)程

  接著(zhù)我來(lái)說(shuō)一下最重要的部分,本節課的教學(xué)過(guò)程:

  這節課的流程主要分為六個(gè)環(huán)節:創(chuàng )設情境(引入目標)、自主探究(感知目標)、討論辨析(理解目標)、變式訓練(鞏固目標)、課堂小結(自我評價(jià))、作業(yè)布置(反饋矯正)。上述六個(gè)環(huán)節由淺入深,層層遞進(jìn)。 多層次、多角度地加深對概念的理解。 提高學(xué)生學(xué)習的興趣,以達到良好的教學(xué)效果。

  第一環(huán)節:創(chuàng )設問(wèn)題情境,引入目標

  課堂開(kāi)始我將提出兩個(gè)問(wèn)題:

  問(wèn)題1:班級有20名男生,16名女生,問(wèn)班級一共多少人?

  問(wèn)題2:某次運動(dòng)會(huì )上,班級有20人參加田賽,16人參加徑賽,問(wèn)一共多少人參加比賽?

  這里我會(huì )讓學(xué)生以小組討論的形式進(jìn)行討論問(wèn)題,事實(shí)上小組合作的形式是本節課主要形式。

  待學(xué)生討論完畢以后我將作歸納總結:?jiǎn)?wèn)題2已無(wú)法用學(xué)過(guò)的知識加以解釋?zhuān)@是與集合有關(guān)的問(wèn)題,因此需用集合的語(yǔ)言加以描述(同時(shí)我將板書(shū)標題:集合)。

  安排這一過(guò)程的意圖是為了從實(shí)際問(wèn)題引入,讓學(xué)生了解數學(xué)來(lái)源于實(shí)際。從而激發(fā)學(xué)生參與課堂學(xué)習的欲望。

  很自然地進(jìn)入到第二環(huán)節:自主探究

  讓學(xué)生閱讀教材,并思考下列問(wèn)題:

 。1)有那些概念?

 。2)有那些符號?

 。3)集合中元素的特性是什么?

  安排這一過(guò)程的意圖是給學(xué)生提供活動(dòng)空間,讓主體主動(dòng)建構自己的知識結構。培養學(xué)生的探究能力。

  讓學(xué)生自主探究之后將進(jìn)入第三環(huán)節:討論辨析

  小組合作探究(1)

  讓學(xué)生觀(guān)察下列實(shí)例

 。1)1~20以?xún)鹊乃匈|(zhì)數;

 。2)所有的正方形;

 。3)到直線(xiàn) 的距離等于定長(cháng) 的所有的點(diǎn);

 。4)方程 的所有實(shí)數根;

  通過(guò)以上實(shí)例,辨析概念:

 。1)集合含義:一般地,某些指定的對象集在一起就成為一個(gè)集合,也簡(jiǎn)稱(chēng)集。而集合中的每個(gè)對象叫做這個(gè)集合的元素。

 。2)表示方法:集合通常用大括號{ }或大寫(xiě)的拉丁字母A,B,C…表示,而元素用小寫(xiě)的拉丁字母a,b,c…表示。

  小組合作探究(2)——集合元素的特征

  問(wèn)題3:任意一組對象是否都能組成一個(gè)集合?集合中的元素有什么特征?

  問(wèn)題4:某單位所有的"帥哥"能否構成一個(gè)集合?由此說(shuō)明什么?

  集合中的元素必須是確定的

  問(wèn)題5:在一個(gè)給定的集合中能否有相同的元素?由此說(shuō)明什么?

  集合中的元素是不重復出現的

  問(wèn)題6:咱班的全體同學(xué)組成一個(gè)集合,調整座位后這個(gè)集合有沒(méi)有變化?由此說(shuō)明什么? 集合中的元素是沒(méi)有順序的

  我如此設計的意圖是因為:?jiǎn)?wèn)題是數學(xué)的心臟,感受問(wèn)題是學(xué)習數學(xué)的根本動(dòng)力。

  小組合作探究(3)——元素與集合的關(guān)系

  問(wèn)題7:設集合A表示"1~20以?xún)鹊乃匈|(zhì)數",那么3,4,5,6這四個(gè)元素哪些在集合A中?哪些不在集合A中?

  問(wèn)題8:如果元素a是集合A中的元素,我們如何用數學(xué)化的語(yǔ)言表達?

  a屬于集合A,記作a∈A

  問(wèn)題9:如果元素a不是集合A中的元素,我們如何用數學(xué)化的語(yǔ)言表達?

  a不屬于集合A,記作aA

  小組合作探究(4)——常用數集及其表示方法

  問(wèn)題10:自然數集,正整數集,整數集,有理數集,實(shí)數集等一些常用數集,分別用什么符號表示?

  自然數集(非負整數集):記作 N

  正整數集:

  整數集:記作 Z

  有理數集:記作 Q 實(shí)數集:記作 R

  設計意圖:由于不同的人對同一問(wèn)題有不同的體驗和理解。讓學(xué)生通過(guò)合作交流相互得到啟發(fā),從而不斷完善自己的知識結構。

  第四環(huán)節:理論遷移 變式訓練

  1.下列指定的對象,能構成一個(gè)集合的是

 、 很小的數

 、 不超過(guò)30的非負實(shí)數

 、 直角坐標平面內橫坐標與縱坐標相等的點(diǎn)

 、 π的近似值

 、 所有無(wú)理數

  A、②③④⑤ B、①②③⑤ C、②③⑤ D、②③④

  第五環(huán)節:課堂小結,自我評價(jià)

  1.這節課學(xué)習的主要內容是什么?

  2.這節課主要解釋了什么數學(xué)思想?

  設計意圖:引導學(xué)生對所學(xué)知識、思想方法進(jìn)行小結,形成知識系統。教師用激勵性的語(yǔ)言加一點(diǎn)評,讓學(xué)生的思想敞亮的發(fā)揮出來(lái)。

  第六環(huán)節:作業(yè)布置,反饋矯正

  1.必做題 課本習題1.1—1、2、3.

  2.選做題 已知集合A={a+2,(a+1)2,a2+3a+3},且1∈A,求實(shí)數a 的值。

  設計意圖:充分考慮到學(xué)生的差異性,讓所有學(xué)生都有成功的情感體驗。

  四、板書(shū)設計

  好的板書(shū)就像一份微型教案,為了讓學(xué)生直觀(guān)易懂的看筆記,板書(shū)應設計得有條理性、概括性、指導性,所以我設計的板書(shū)如下:

  集 合

  1.集合的概念

  2.集合元素的特征

 。▽W(xué)生板演)

  3.常見(jiàn)集合的表示

  4.范例研究

高中數學(xué)說(shuō)課稿13

  各位評委,老師們:大家好!

  很高興參加這次說(shuō)課活動(dòng)。這對我來(lái)說(shuō)也是一次難得的學(xué)習和鍛煉的機會(huì ),感謝各位老師在百忙之中來(lái)此予以指導。希望各位評委和老師們對我的說(shuō)課內容提出寶貴意見(jiàn)。

  我說(shuō)課的內容是<平面向量>的教學(xué),所用的教材是人民教育出版社出版的全日制普通高級中學(xué)教科書(shū)(試驗修訂本—必修)<數學(xué)>第一冊下,教學(xué)內容為第96頁(yè)至98頁(yè)第五章第一節。本校是浙江省一級重點(diǎn)中學(xué),學(xué)生基礎相對較好。我在進(jìn)行教學(xué)設計時(shí),也充分考慮到了這一點(diǎn)。

  下面我從教材分析,教學(xué)目標的確定,教學(xué)方法的選擇和教學(xué)過(guò)程的設計四個(gè)方面來(lái)匯報我對這節課的教學(xué)設想。

  一說(shuō)教材

 。1)地位和作用

  向量是近代數學(xué)中重要和基本的概念之一,有著(zhù)深刻的幾何背景,是解決幾何問(wèn)題的有力工具。向量概念引入后,全等和平行(平移),相似,垂直,勾股定理等就可以轉化為向量的加(減)法,數乘向量,數量積運算(運算率),從而把圖形的基本性質(zhì)轉化為向量的運算體系。向量是溝通代數,幾何與三角函數的一種工具,有著(zhù)極其豐富的實(shí)際背景,在數學(xué)和物理學(xué)科中具有廣泛的應用。

  平面向量的基本概念是在學(xué)生了解了物理學(xué)中的有關(guān)力,位移等矢量的概念的基礎上進(jìn)一步對向量的深入學(xué)習。為學(xué)習向量的知識體系奠定了知識和方法基礎。

 。2)教學(xué)結構的調整

  課本在這一部分內容的教學(xué)為一課時(shí),首先從小船航行的距離和方向兩個(gè)要素出發(fā),抽象出向量的概念,并重點(diǎn)說(shuō)明了向量與數量的區別。然后介紹了向量的幾何表示,向量的長(cháng)度,零向量,單位向量,平行向量,共線(xiàn)向量,相等向量等基本概念。為使學(xué)生更好地掌握這些基本概念,同時(shí)深化其認知過(guò)程和探究過(guò)程。在教學(xué)中我將教學(xué)的順序做如下的調整:將本節教學(xué)中認知過(guò)程的教學(xué)內容適當集中,以突出這節課的主題;例題,習題部分主要由學(xué)生依照概念自行分析,獨立完成。

 。3)重點(diǎn),難點(diǎn),關(guān)鍵

  由于本節課是本章內容的第一節課,是學(xué)生學(xué)習本章的基礎。為了本章后面知識的學(xué)習,首先必須掌握向量的概念,要抓住向量的本質(zhì):大小與方向。所以向量,相等向量的概念,向量的幾何表示是這節課的重點(diǎn)。本節課是為高一后半學(xué)期學(xué)生設計的,盡管此時(shí)的學(xué)生已經(jīng)有了一定的學(xué)習方法和習慣,但根據以往的教學(xué)經(jīng)驗,多數學(xué)生對向量的認識還比較單一,僅僅考慮其大小,忽略其方向,這對學(xué)生的理解能力要求比較高,所以我認為向量概念也是這節課的難點(diǎn)。而解決這一難點(diǎn)的關(guān)鍵是多用復雜的幾何圖形中相等的有向線(xiàn)段讓學(xué)生進(jìn)行辨認,加深對向量的理解。

  二說(shuō)教學(xué)目標的確定

  根據本課教材的特點(diǎn),新大綱對本節課的教學(xué)要求,學(xué)生身心發(fā)展的合理需要,我從三個(gè)方面確定了以下教學(xué)目標:

 。1)基礎知識目標:理解向量,零向量,單位向量,共線(xiàn)向量,平行向量,相等向量的概念,會(huì )用字母表示向量,能讀寫(xiě)已知圖中的向量。會(huì )根據圖形判定向量是否平行,共線(xiàn),相等。

 。2)能力訓練目標:培養學(xué)生觀(guān)察、歸納、類(lèi)比、聯(lián)想等發(fā)現規律的一般方法,培養學(xué)生觀(guān)察問(wèn)題,分析問(wèn)題,解決問(wèn)題的能力。

 。3)情感目標:讓學(xué)生在民主、和諧的共同活動(dòng)中感受學(xué)習的樂(lè )趣。

  三說(shuō)教學(xué)方法的選擇

 、窠虒W(xué)方法

  本節課我采用了”啟發(fā)探究式的教學(xué)方法,根據本課教材的特點(diǎn)和學(xué)生的實(shí)際情況在教學(xué)中突出以下兩點(diǎn):

 。1)由教材的特點(diǎn)確立類(lèi)比思維為教學(xué)的主線(xiàn)。

  從教材內容看平面向量無(wú)論從形式還是內容都與物理學(xué)中的有向線(xiàn)段,矢量的概念類(lèi)似。因此在教學(xué)中運用類(lèi)比作為思維的主線(xiàn)進(jìn)行教學(xué)。讓學(xué)生充分體會(huì )數學(xué)知識與其他學(xué)科之間的聯(lián)系以及發(fā)生與發(fā)展的過(guò)程。

 。2)由學(xué)生的特點(diǎn)確立自主探索式的學(xué)習方法

  通常學(xué)生對于概念課學(xué)起來(lái)很枯燥,不感興趣,因此要考慮學(xué)生的情感需要,找一些學(xué)生感興趣的題材來(lái)激發(fā)學(xué)生的學(xué)習興趣,另外,學(xué)生都有表現自己的欲望,希望得到老師和其他同學(xué)的認可,要多表?yè)P,多肯定來(lái)激勵他們的學(xué)習熱情?紤]到我校學(xué)生的基礎較好,思維較為活躍,對自主探索式的學(xué)習方法也有一定的認識,所以在教學(xué)中我通過(guò)創(chuàng )設問(wèn)題情境,啟發(fā)引導學(xué)生運用科學(xué)的思維方法進(jìn)行自主探究。將學(xué)生的獨立思考,自主探究,交流討論等探索活動(dòng)貫穿于課堂教學(xué)的全過(guò)程,突出學(xué)生的主體作用。

 、蚪虒W(xué)手段

  本節課中,除使用常規的教學(xué)手段外,我還使用了多媒體投影儀和計算機來(lái)輔助教學(xué)。多媒體投影為師生的交流和討論提供了平臺;計算機演示的作圖過(guò)程則有助于滲透數形結合思想,更易于對概念的理解和難點(diǎn)的突破。

  四教學(xué)過(guò)程的設計

 、裰R引入階段———提出學(xué)習課題,明確學(xué)習目標

 。1)創(chuàng )設情境——引入概念

  數學(xué)學(xué)習應該與學(xué)生的生活融合起來(lái),從學(xué)生的生活經(jīng)驗和已有的知識背景出發(fā),讓他們在生活中去發(fā)現數學(xué)、探究數學(xué)、認識并掌握數學(xué)。

  由生活中具體的向量的實(shí)例引入:大海中船只的航線(xiàn),中國象棋中”馬”,”象”的走法等。這些符合高中學(xué)生思維活躍,想象力豐富的特點(diǎn),有利于激發(fā)學(xué)生的學(xué)習興趣。

 。2)觀(guān)察歸納——形成概念

  由實(shí)例得出有向線(xiàn)段的概念,有向線(xiàn)段的三個(gè)要素:起點(diǎn),方向,長(cháng)度。明確知道了有向線(xiàn)段的起點(diǎn),方向和長(cháng)度,它的終點(diǎn)就唯一確定。再有目的的進(jìn)行設計,引導學(xué)生概括總結出本課新的知識點(diǎn):向量的概念及其幾何表示。

 。3)討論研究——深化概念

  在得到概念后進(jìn)行歸納,深化,之后向學(xué)生提出以下三個(gè)問(wèn)題:

 、傧蛄康囊厥鞘裁?

 、谙蛄恐g能否比較大?

 、巯蛄颗c數量的區別是什么?

  同時(shí)指出這就是本節課我們要研究和學(xué)習的主題。

 、蛑R探索階段———探索平面向量的平行向量。相等向量等概念

 。1)總結反思——提高認識

  方向相同或相反的非零向量叫平行向量,也即共線(xiàn)向量,并且規定0與任一向量平行.長(cháng)度相等且方向相同的向量叫相等向量,規定零向量與零向量相等.平行向量不一定相等,但相等向量一定是平行向量,即向量平行是向量相等的必要條件。

 。2)即時(shí)訓練—鞏固新知

  為了使學(xué)生達到對知識的深化理解,從而達到鞏固提高的效果,我特地設計了一組即時(shí)訓練題,通過(guò)學(xué)生的觀(guān)察嘗試,討論研究,教師引導來(lái)鞏固新知識。

 。劬毩1]判斷下列命題是否正確,若不正確,請簡(jiǎn)述理由.

 、傧蛄颗c是共線(xiàn)向量,則A、B、C、D四點(diǎn)必在一直線(xiàn)上;

 、趩挝幌蛄慷枷嗟;

 、廴我幌蛄颗c它的相反向量不相等;

 、芩倪呅蜛BCD是平行四邊形的充要條件是=;

 、菽0是一個(gè)向量方向不確定的充要條件;

 、薰簿(xiàn)的向量,若起點(diǎn)不同,則終點(diǎn)一定不同.

 。劬毩2]下列命題正確的是( )

  A.a(chǎn)與b共線(xiàn),b與c共線(xiàn),則a與c也共線(xiàn)

  B.任意兩個(gè)相等的非零向量的始點(diǎn)與終點(diǎn)是一平行四邊形的四頂點(diǎn)

  C.向量a與b不共線(xiàn),則a與b都是非零向量

  D.有相同起點(diǎn)的兩個(gè)非零向量不平行

 、笾R應用階段————共線(xiàn)向量,相等向量等概念的初步應用

  在本階段的教學(xué)中,我采用的是課本上一道典型的例題:在一個(gè)復雜圖形中觀(guān)察,辨認平行,相等的有向線(xiàn)段。選用本題的目的是讓學(xué)生進(jìn)行獨立思考,自主探究,交流討論等探索活動(dòng),加深對概念的理解和對難點(diǎn)的突破。

  例如圖所示,設O是正六邊形ABCDEF的中心,分別寫(xiě)出圖中與向量相等的向量。(同時(shí)思考:向量與相等么?向量與相等么?)

  具體教學(xué)安排如下:

 。1)分析解決問(wèn)題

  先引導學(xué)生分析解決問(wèn)題。包括向量的概念,:向量相等的概念。抓住相等向量概念的實(shí)質(zhì):兩個(gè)向量只有當它們的模相等,同時(shí)方向又相同時(shí),才能稱(chēng)它們相等。進(jìn)而進(jìn)行正確的辨認,直至最終解決問(wèn)題。

 。2)歸納解題方法

  主要引導學(xué)生歸納以下兩個(gè)問(wèn)題:①零向量的方向是任意的,它只與零向量相

  等;②兩個(gè)向量只要它們的模相等,方向相同就是相等向量。一個(gè)向量只要不改變它的大小和方向,是可以任意平行移動(dòng)的,既向量是自由的。

 、魧W(xué)習,小結階段———歸納知識方法,布置課后作業(yè)

  本階段通過(guò)學(xué)習小結進(jìn)行課堂教學(xué)的反饋,組織和指導學(xué)生歸納知識,技能,方法的一般規律,為后續學(xué)習打好基礎。

  具體的教學(xué)安排如下:

 。1)知識,方法小結在知識層面上我首先引導學(xué)生回顧本節課的主要內容,提醒學(xué)生要抓住向量的本質(zhì):大小與方向,對它們進(jìn)行類(lèi)比,加深對每個(gè)概念的理解。

  在方法層面上我將帶領(lǐng)學(xué)生回顧探索過(guò)程中用到的思維方法和數學(xué)方法如:

  類(lèi)比,數形結合,等價(jià)轉化等進(jìn)行強調。

 。2)布置課后作業(yè)

  閱讀教材96至97頁(yè)內容,整理課堂筆記,習題5。1第1,2,3題。

高中數學(xué)說(shuō)課稿14

  各位老師:

  大家好!

  我叫***,來(lái)自**。我說(shuō)課的題目是《古典概型》,內容選自于高中教材新課程人教A版必修3第三章第二節,課時(shí)安排為兩個(gè)課時(shí),本節課內容為第一課時(shí)。下面我將從教材分析、教學(xué)目標分析、教法與學(xué)法分析、教學(xué)過(guò)程分析四大方面來(lái)闡述我對這節課的分析和設計:

  一、教材分析

  1.教材所處的地位和作用

  古典概型是一種特殊的數學(xué)模型,也是一種最基本的概率模型,在概率論中占有相當重要的地位。它承接著(zhù)前面學(xué)過(guò)的隨機事件的概率及其性質(zhì),又是以后學(xué)習條件概率的基礎,起到承前啟后的作用。

  2.教學(xué)的重點(diǎn)和難點(diǎn)

  重點(diǎn):理解古典概型及其概率計算公式。

  難點(diǎn):古典概型的判斷及把一些實(shí)際問(wèn)題轉化成古典概型。

  二、教學(xué)目標分析

  1.知識與技能目標

 。1)通過(guò)試驗理解基本事件的概念和特點(diǎn)

 。2)在數學(xué)建模的過(guò)程中,抽離出古典概型的兩個(gè)基本特征,推導出古典概型下的概率的計算公式。

  2、過(guò)程與方法:

  經(jīng)歷公式的推導過(guò)程,體驗由特殊到一般的數學(xué)思想方法。

  3、情感態(tài)度與價(jià)值觀(guān):

 。1)用具有現實(shí)意義的實(shí)例,激發(fā)學(xué)生的學(xué)習興趣,培養學(xué)生勇于探索,善于發(fā)現的創(chuàng )新思想。

 。2)讓學(xué)生掌握"理論來(lái)源于實(shí)踐,并把理論應用于實(shí)踐"的辨證思想。

  三、教法與學(xué)法分析

  1、教法分析:根據本節課的特點(diǎn),采用引導發(fā)現和歸納概括相結合的教學(xué)方法,通過(guò)提出問(wèn)題、思考問(wèn)題、解決問(wèn)題等教學(xué)過(guò)程,觀(guān)察對比、概括歸納古典概型的概念及其概率公式,再通過(guò)具體問(wèn)題的提出和解決,來(lái)激發(fā)學(xué)生的學(xué)習興趣,調動(dòng)學(xué)生的主體能動(dòng)性,讓每一個(gè)學(xué)生充分地參與到學(xué)習活動(dòng)中來(lái)。

  2、學(xué)法分析:學(xué)生在教師創(chuàng )設的問(wèn)題情景中,通過(guò)觀(guān)察、類(lèi)比、思考、探究、概括、歸納和動(dòng)手嘗試相結合,體現了學(xué)生的主體地位,培養了學(xué)生由具體到抽象,由特殊到一般的數學(xué)思維能力,形成了實(shí)事求是的科學(xué)態(tài)度。

 、鍎(chuàng )設情景、引入新課

  在課前,教師布置任務(wù),以小組為單位,完成下面兩個(gè)模擬試驗:

  試驗一:拋擲一枚質(zhì)地均勻的硬幣,分別記錄"正面朝上"和"反面朝上"的次數,要求每個(gè)數學(xué)小組至少完成20次(最好是整十數),最后由代表匯總;

  試驗二:拋擲一枚質(zhì)地均勻的骰子,分別記錄"1點(diǎn)"、"2點(diǎn)"、"3點(diǎn)"、"4點(diǎn)"、"5點(diǎn)"和"6點(diǎn)"的次數,要求每個(gè)數學(xué)小組至少完成60次(最好是整十數),最后由代表匯總。

  在課上,學(xué)生展示模擬試驗的操作方法和試驗結果,并與同學(xué)交流活動(dòng)感受,教師最后匯總方法、結果和感受,并提出兩個(gè)問(wèn)題。

  1.用模擬試驗的方法來(lái)求某一隨機事件的概率好不好?為什么?

  不好,要求出某一隨機事件的概率,需要進(jìn)行大量的試驗,并且求出來(lái)的結果是頻率,而不是概率。

  2.根據以前的學(xué)習,上述兩個(gè)模擬試驗的每個(gè)結果之間都有什么特點(diǎn)?]

  「設計意圖」通過(guò)課前的模擬實(shí)驗,讓學(xué)生感受與他人合作的重要性,培養學(xué)生運用數學(xué)語(yǔ)言的能力。隨著(zhù)新問(wèn)題的提出,激發(fā)了學(xué)生的求知欲望,通過(guò)觀(guān)察對比,培養了學(xué)生發(fā)現問(wèn)題的能力。

 、嫠伎冀涣、形成概念

  學(xué)生觀(guān)察對比得出兩個(gè)模擬試驗的相同點(diǎn)和不同點(diǎn),教師給出基本事件的概念,并對相關(guān)特點(diǎn)加以說(shuō)明,加深對新概念的理解。

  [基本事件有如下的兩個(gè)特點(diǎn):

 。1)任何兩個(gè)基本事件是互斥的;

 。2)任何事件(除不可能事件)都可以表示成基本事件的和.]

  「設計意圖」讓學(xué)生從問(wèn)題的相同點(diǎn)和不同點(diǎn)中找出研究對象的對立統一面,這能培養學(xué)生分析問(wèn)題的能力,同時(shí)也教會(huì )學(xué)生運用對立統一的辯證唯物主義觀(guān)點(diǎn)來(lái)分析問(wèn)題的一種方法。教師的注解可以使學(xué)生更好的把握問(wèn)題的關(guān)鍵。

  例1從字母a、b、c、d中任意取出兩個(gè)不同字母的試驗中,有哪些基本事件?

  先讓學(xué)生嘗試著(zhù)列出所有的基本事件,教師再講解用樹(shù)狀圖列舉問(wèn)題的優(yōu)點(diǎn)。

  「設計意圖」將數形結合和分類(lèi)討論的思想滲透到具體問(wèn)題中來(lái)。由于沒(méi)有學(xué)習排列組合,因此用列舉法列舉基本事件的個(gè)數,不僅能讓學(xué)生直觀(guān)的感受到對象的總數,而且還能使學(xué)生在列舉的時(shí)候作到不重不漏。解決了求古典概型中基本事件總數這一難點(diǎn)

  觀(guān)察對比,發(fā)現兩個(gè)模擬試驗和例1的共同特點(diǎn):

  讓學(xué)生先觀(guān)察對比,找出兩個(gè)模擬試驗和例1的共同特點(diǎn),再概括總結得到的結論,教師最后補充說(shuō)明。

  [經(jīng)概括總結后得到:

 。1)試驗中所有可能出現的基本事件只有有限個(gè);(有限性)

 。2)每個(gè)基本事件出現的可能性相等。(等可能性)

  我們將具有這兩個(gè)特點(diǎn)的概率模型稱(chēng)為古典概率概型,簡(jiǎn)稱(chēng)古典概型。

  「設計意圖」培養運用從具體到抽象、從特殊到一般的辯證唯物主義觀(guān)點(diǎn)分析問(wèn)題的能力,充分體現了數學(xué)的化歸思想。啟發(fā)誘導的同時(shí),訓練了學(xué)生觀(guān)察和概括歸納的能力。通過(guò)列出相同和不同點(diǎn),能讓學(xué)生很好的理解古典概型。

 、缬^(guān)察分析、推導方程

  問(wèn)題思考:在古典概型下,基本事件出現的概率是多少?隨機事件出現的概率如何計算?

  教師提出問(wèn)題,引導學(xué)生類(lèi)比分析兩個(gè)模擬試驗和例1的概率,先通過(guò)用概率加法公式求出隨機事件的概率,再對比概率結果,發(fā)現其中的聯(lián)系,最后概括總結得出古典概型計算任何事件的概率計算公式:

  「設計意圖」鼓勵學(xué)生運用觀(guān)察類(lèi)比和從具體到抽象、從特殊到一般的辯證唯物主義方法來(lái)分析問(wèn)題,同時(shí)讓學(xué)生感受數學(xué)化歸思想的優(yōu)越性和這一做法的合理性,突出了古典概型的概率計算公式這一重點(diǎn)。

  提問(wèn):

 。1)在例1的實(shí)驗中,出現字母"d"的概率是多少?

 。2)在使用古典概型的概率公式時(shí),應該注意什么?

  「設計意圖」教師提問(wèn),學(xué)生回答,深化對古典概型的概率計算公式的理解,也抓住了解決古典概型的概率計算的關(guān)鍵。

 、枥}分析、推廣應用

  例2單選題是標準化考試中常用的題型,一般是從A,B,c,D四個(gè)選項中選擇一個(gè)正確答案。如果考生掌握了考差的內容,他可以選擇唯一正確的答案。假設考生不會(huì )做,他隨機的選擇一個(gè)答案,問(wèn)他答對的概率是多少?

  學(xué)生先思考再回答,教師對學(xué)生沒(méi)有注意到的關(guān)鍵點(diǎn)加以說(shuō)明。

  「設計意圖」讓學(xué)生明確決概率的計算問(wèn)題的關(guān)鍵是:先要判斷該概率模型是不是古典概型,再要找出隨機事件A包含的基本事件的個(gè)數和試驗中基本事件的總數。鞏固學(xué)生對已學(xué)知識的掌握。

  例3同時(shí)擲兩個(gè)骰子,計算:

 。1)一共有多少種不同的結果?

 。2)其中向上的點(diǎn)數之和是5的結果有多少種?

 。3)向上的點(diǎn)數之和是5的概率是多少?

  先給出問(wèn)題,再讓學(xué)生完成,然后引導學(xué)生分析問(wèn)題,發(fā)現解答中存在的問(wèn)題。引導學(xué)生用列表來(lái)列舉試驗中的基本事件的總數。

  「設計意圖」利用列表數形結合和分類(lèi)討論,既能形象直觀(guān)地列出基本事件的總數,又能做到列舉的不重不漏。深化鞏固對古典概型及其概率計算公式的理解。培養學(xué)生運用數形結合的思想,提高發(fā)現問(wèn)題、分析問(wèn)題、解決問(wèn)題的能力,增強學(xué)生數學(xué)思維情趣,形成學(xué)習數學(xué)知識的積極態(tài)度。

 、樘骄克枷、鞏固深化

  問(wèn)題思考:為什么要把兩個(gè)骰子標上記號?如果不標記號會(huì )出現什么情況?你能解釋其中的原因嗎?

  要求學(xué)生觀(guān)察對比兩種結果,找出問(wèn)題產(chǎn)生的原因。

  「設計意圖」通過(guò)觀(guān)察對比,發(fā)現兩種結果不同的根本原因是--研究的問(wèn)題是否滿(mǎn)足古典概型,從而再次突出了古典概型這一教學(xué)重點(diǎn),體現了學(xué)生的主體地位,逐漸養成自主探究能力。

 、昕偨Y概括、加深理解

  1.基本事件的特點(diǎn)

  2.古典概型的特點(diǎn)

  3.古典概型的概率計算公式

  學(xué)生小結歸納,不足的地方老師補充說(shuō)明。

  「設計意圖」使學(xué)生對本節課的知識有一個(gè)系統全面的認識,并把學(xué)過(guò)的相關(guān)知識有機地串聯(lián)起來(lái),便于記憶和應用,也進(jìn)一步升華了這節課所要表達的本質(zhì)思想,讓學(xué)生的認知更上一層。

 、氩贾米鳂I(yè)

  課本練習1、2、3

  「設計意圖」進(jìn)一步讓學(xué)生掌握古典概型及其概率公式,并能夠學(xué)以致用,加深對本節課的理解。

高中數學(xué)說(shuō)課稿15

  今天我說(shuō)課的內容是高二立體幾何(人教版)第九章第二章節第八小節《棱錐》的第一課時(shí):《棱錐的概念和性質(zhì)》。下面我就從教材分析、教法、學(xué)法和教學(xué)程序四個(gè)方面對本課的教學(xué)設計進(jìn)行說(shuō)明。

  一、說(shuō)教材

  1、本節在教材中的地位和作用:

  本節是棱柱的后續內容,又是學(xué)習球的必要基礎。第一課時(shí)的教學(xué)目的是讓學(xué)生掌握棱錐的一些必要的基礎知識,同時(shí)培養學(xué)生猜想、類(lèi)比、比較、轉化的能力。著(zhù)名的生物學(xué)家達爾文說(shuō):“最有價(jià)值的知識是關(guān)于方法和能力的知識”,因此,應該利用這節課培養學(xué)生學(xué)習方法、提高學(xué)習能力。

  2. 教學(xué)目標確定:

  (1)能力訓練要求

 、偈箤W(xué)生了解棱錐及其底面、側面、側棱、頂點(diǎn)、高的概念。

 、谑箤W(xué)生掌握截面的性質(zhì)定理,正棱錐的性質(zhì)及各元素間的關(guān)系式。

  (2)德育滲透目標

 、倥囵B學(xué)生善于通過(guò)觀(guān)察分析實(shí)物形狀到歸納其性質(zhì)的能力。

 、谔岣邔W(xué)生對事物的感性認識到理性認識的能力。

 、叟囵B學(xué)生“理論源于實(shí)踐,用于實(shí)踐”的觀(guān)點(diǎn)。

  3. 教學(xué)重點(diǎn)、難點(diǎn)確定:

  重 點(diǎn):1.棱錐的截面性質(zhì)定理 2.正棱錐的性質(zhì)。

  難 點(diǎn):培養學(xué)生善于比較,從比較中發(fā)現事物與事物的區別。

  二、說(shuō)教學(xué)方法和手段

  1、教法:

  “以學(xué)生參與為標志,以啟迪學(xué)生思維,培養學(xué)生創(chuàng )新能力為核心”。

  在教學(xué)中根據高中生心理特點(diǎn)和教學(xué)進(jìn)度需要,設置一些啟發(fā)性題目,采用啟發(fā)式誘導法,講練結合,發(fā)揮教師主導作用,體現學(xué)生主體地位。

  2、教學(xué)手段:

  根據《教學(xué)大綱》中“堅持啟發(fā)式,反對注入式”的教學(xué)要求,針對本節課概念性強,思維量大,整節課以啟發(fā)學(xué)生觀(guān)察思考、分析討論為主,采用“多媒體引導點(diǎn)撥”的教學(xué)方法以多媒體演示為載體,以“引導思考”為核心,設計課件展示,并引導學(xué)生沿著(zhù)積極的思維方向,逐步達到即定的教學(xué)目標,發(fā)展學(xué)生的邏輯思維能力;學(xué)生在教師營(yíng)造的“可探索”的環(huán)境里,積極參與,生動(dòng)活潑地獲取知識,掌握規律、主動(dòng)發(fā)現、積極探索。

  三、說(shuō)學(xué)法:

  這節課的核心是棱錐的截面性質(zhì)定理,.正棱錐的性質(zhì)。教學(xué)的指導思想是:遵循由已知(棱柱)探究未知(棱錐)、由一般(棱錐)到特殊(正棱錐)的認識規律,啟發(fā)學(xué)生反復思考,不斷內化成為自己的認知結構。

  四、 學(xué)程序:

  [復習引入新課]

  1.棱柱的性質(zhì):

 。1)側棱都相等,側面是平行四邊形

 。2)兩個(gè)底面與平行于底面的截面是全等的多邊形

 。3)過(guò)不相鄰的兩條側棱的截面是平行四邊形

  2.幾個(gè)重要的四棱柱:

  平行六面體、直平行六面體、長(cháng)方體、正方體

  思考:如果將棱柱的上底面給縮小成一個(gè)點(diǎn),那么我們得到的將會(huì )是什么樣的體呢?

  [講授新課]

  1、棱錐的基本概念

 。1).棱錐及其底面、側面、側棱、頂點(diǎn)、高、對角面的概念

 。2).棱錐的表示方法、分類(lèi)

  2、棱錐的性質(zhì)

  (1). 截面性質(zhì)定理:

  如果棱錐被平行于底面的平面所截,那么截面和底面相似,并且它們面積的比等于截得的棱錐的高與已知棱錐的高的平方比

  已知:如圖(略),在棱錐S-AC中,SH是高,截面A’B’C’D’E’平行于底面,并與SH交于H’。

  證明:(略)

  引申:如果棱錐被平行于底面的平面所截,則截得的小棱錐與已知棱錐

  的側面積比也等于它們對應高的平方比、等于它們的底面積之比。

  (2).正棱錐的定義及基本性質(zhì):

  正棱錐的定義:

 、俚酌媸钦噙呅

 、陧旤c(diǎn)在底面的射影是底面的中心

 、俑鱾壤庀嗟,各側面是全等的等腰三角形;各等腰三角形底邊上的高相等,它們叫做正棱錐的斜高;

 、诶忮F的高、斜高和斜高在底面內的射影組成一個(gè)直角三角形;

  棱錐的高、側棱和側棱在底面內的射影也組成一個(gè)直角三角形

  引申:

 、僬忮F的側棱與底面所成的角都相等;

 、谡忮F的側面與底面所成的二面角相等;

  (3)正棱錐的各元素間的關(guān)系

  下面我們結合圖形,進(jìn)一步探討正棱錐中各元素間的關(guān)系,為研究方便將課本 圖9-74(略)正棱錐中的棱錐S-OBM從整個(gè)圖中拿出來(lái)研究。

  引申:

 、儆^(guān)察圖中三棱錐S-OBM的側面三角形狀有何特點(diǎn)?

 。ǹ勺C得∠SOM =∠SOB =∠SMB =∠OMB =900,所以側面全是直角三角形。)

 、谌舴謩e假設正棱錐的高SO= h,斜高SM= h’,底面邊長(cháng)的一半BM= a/2,底面正多邊形外接圓半徑OB=R,內切圓半徑OM= r,側棱SB=L,側面與底面的二面角∠SMO= α ,側棱與底面組成的角 ∠SBO= β, ∠BOM=1800/n (n為底面正多邊形的邊數)請試通過(guò)三角形得出以上各元素間的關(guān)系式。

 。ㄕn后思考題)

  [例題分析]

  例1.若一個(gè)正棱錐每一個(gè)側面的頂角都是600,則這個(gè)棱錐一定不是( )

  A.三棱錐 B.四棱錐 C.五棱錐 D.六棱錐

 。ù鸢福篋)

  例2.如圖已知正三棱錐S-ABC的高SO=h,斜高SM=L,求經(jīng)過(guò)SO的中點(diǎn)且平行于底面的截面△A’B’C’的面積。

  ﹙解析及圖略﹚

  例3.已知正四棱錐的棱長(cháng)和底面邊長(cháng)均為a,求:

 。1)側面與底面所成角α的余弦(2)相鄰兩個(gè)側面所成角β的余弦

  ﹙解析及圖略﹚

  [課堂練習]

  1、 知一個(gè)正六棱錐的高為h,側棱為L(cháng),求它的底面邊長(cháng)和斜高。

  ﹙解析及圖略﹚

  2、 錐被平行與底面的平面所截,若截面面積與底面面積之比為1∶2,求此棱錐的高被分成的兩段(從頂點(diǎn)到截面和從截面到底面)之比。

  ﹙解析及圖略﹚

  [課堂小結]

  一:棱錐的基本概念及表示、分類(lèi)

  二:棱錐的性質(zhì)

  截面性質(zhì)定理:如果棱錐被平行于底面的平面所截,那么截面和底面相似,并且它們面積的比等于截得的棱錐的高與已知棱錐的高的平方比

  引申:如果棱錐被平行于底面的平面所截,則截得的小棱錐與已知棱錐的側面積比也等于它們對應高的平方比、等于它們的底面積之比。

  2.正棱錐的定義及基本性質(zhì)

  正棱錐的定義:

 、俚酌媸钦噙呅

 、陧旤c(diǎn)在底面的射影是底面的中心

 。1)各側棱相等,各側面是全等的等腰三角形;各等腰三角形底邊上的高

  相等,它們叫做正棱錐的斜高;

 。2)棱錐的高、斜高和斜高在底面內的射影組成一個(gè)直角三角形;棱錐的高、側棱和側棱在底面內的射影也組成一個(gè)直角三角形

  引申: ①正棱錐的側棱與底面所成的角都相等;

 、谡忮F的側面與底面所成的二面角相等;

 、壅忮F中各元素間的關(guān)系

  [課后作業(yè)]

  1:課本P52 習題9.8 : 2、 4

  2:課時(shí)訓練:訓練一

【高中數學(xué)說(shuō)課稿】相關(guān)文章:

高中數學(xué)的說(shuō)課稿07-11

高中數學(xué)經(jīng)典說(shuō)課稿07-11

高中數學(xué)經(jīng)典說(shuō)課稿范文12-06

高中數學(xué)免費說(shuō)課稿09-30

高中數學(xué)說(shuō)課稿11-14

高中數學(xué)說(shuō)課稿08-26

高中數學(xué)向量說(shuō)課稿09-09

高中數學(xué)統計說(shuō)課稿07-11

高中數學(xué)向量說(shuō)課稿07-11

高中數學(xué)數列說(shuō)課稿07-11