精選高中數學(xué)說(shuō)課稿模板匯編9篇
在教學(xué)工作者實(shí)際的教學(xué)活動(dòng)中,總歸要編寫(xiě)說(shuō)課稿,借助說(shuō)課稿可以讓教學(xué)工作更科學(xué)化。那么問(wèn)題來(lái)了,說(shuō)課稿應該怎么寫(xiě)?以下是小編精心整理的高中數學(xué)說(shuō)課稿9篇,僅供參考,希望能夠幫助到大家。
高中數學(xué)說(shuō)課稿 篇1
【教材分析】
1、本節教材的地位與作用
本節主要研究閉區間上的連續函數最大值和最小值的求法和實(shí)際應用,分兩課時(shí),這里是第一課時(shí),它是在學(xué)生已經(jīng)會(huì )求某些函數的最值,并且已經(jīng)掌握了性質(zhì):“如果f(x)是閉區間[a,b]上的連續函數,那么f(x)在閉區間[a,b]上有最大值和最小值”,以及會(huì )求可導函數的極值之后進(jìn)行學(xué)習的,學(xué)好這一節,學(xué)生將會(huì )求更多的函數的最值,運用本節知識可以解決科技、經(jīng)濟、社會(huì )中的一些如何使成本最低、產(chǎn)量最高、效益最大等實(shí)際問(wèn)題。這節課集中體現了數形結合、理論聯(lián)系實(shí)際等重要的數學(xué)思想方法,學(xué)好本節,對于進(jìn)一步完善學(xué)生的知識結構,培養學(xué)生用數學(xué)的意識都具有極為重要的意義。
2、教學(xué)重點(diǎn)
會(huì )求閉區間上連續開(kāi)區間上可導的函數的最值。
3、教學(xué)難點(diǎn)
高三年級學(xué)生雖然已經(jīng)具有一定的知識基礎,但由于對求函數極值還不熟練,特別是對優(yōu)化解題過(guò)程依據的理解會(huì )有較大的困難,所以這節課的難點(diǎn)是理解確定函數最值的方法。
4、教學(xué)關(guān)鍵
本節課突破難點(diǎn)的關(guān)鍵是:理解方程f′(x)=0的解,包含有指定區間內全部可能的極值點(diǎn)。
【教學(xué)目標】
根據本節教材在高中數學(xué)知識體系中的地位和作用,結合學(xué)生已有的認知水平,制定本節如下的教學(xué)目標:
1、知識和技能目標
。1)理解函數的最值與極值的區別和聯(lián)系。
。2)進(jìn)一步明確閉區間[a,b]上的連續函數f(x),在[a,b]上必有最大、最小值。
。3)掌握用導數法求上述函數的最大值與最小值的方法和步驟。
2、過(guò)程和方法目標
。1)了解開(kāi)區間內的連續函數或閉區間上的不連續函數不一定有最大、最小值。
。2)理解閉區間上的連續函數最值存在的可能位置:極值點(diǎn)處或區間端點(diǎn)處。
。3)會(huì )求閉區間上連續,開(kāi)區間內可導的函數的最大、最小值。
3、情感和價(jià)值目標
。1)認識事物之間的的區別和聯(lián)系。
。2)培養學(xué)生觀(guān)察事物的能力,能夠自己發(fā)現問(wèn)題,分析問(wèn)題并最終解決問(wèn)題。
。3)提高學(xué)生的數學(xué)能力,培養學(xué)生的創(chuàng )新精神、實(shí)踐能力和理性精神。
【教法選擇】
根據皮亞杰的建構主義認識論,知識是個(gè)體在與環(huán)境相互作用的過(guò)程中逐漸建構的結果,而認識則是起源于主客體之間的相互作用。
本節課在幫助學(xué)生回顧肯定了閉區間上的連續函數一定存在最大值和最小值之后,引導學(xué)生通過(guò)觀(guān)察閉區間內的連續函數的幾個(gè)圖象,自己歸納、總結出函數最大值、最小值存在的可能位置,進(jìn)而探索出函數最大值、最小值求解的方法與步驟,并優(yōu)化解題過(guò)程,讓學(xué)生主動(dòng)地獲得知識,老師只是進(jìn)行適當的引導,而不進(jìn)行全部的灌輸。為突出重點(diǎn),突破難點(diǎn),這節課主要選擇以合作探究式教學(xué)法組織教學(xué)。
【學(xué)法指導】
對于求函數的最值,高三學(xué)生已經(jīng)具備了良好的知識基礎,剩下的問(wèn)題就是有沒(méi)有一種更一般的方法,能運用于更多更復雜函數的求最值問(wèn)題?教學(xué)設計中注意激發(fā)起學(xué)生強烈的求知欲望,使得他們能積極主動(dòng)地觀(guān)察、分析、歸納,以形成認識,參與到課堂活動(dòng)中,充分發(fā)揮他們作為認知主體的作用。
【教學(xué)過(guò)程】
本節課的教學(xué),大致按照“創(chuàng )設情境,鋪墊導入——合作學(xué)習,探索新知——指導應用,鼓勵創(chuàng )新——歸納小結,反饋回授”四個(gè)環(huán)節進(jìn)行組織。
高中數學(xué)說(shuō)課稿 篇2
說(shuō)教學(xué)目標
A、知識目標:
掌握等差數列前n項和公式的推導方法;掌握公式的運用。
B、能力目標:
。1)通過(guò)公式的探索、發(fā)現,在知識發(fā)生、發(fā)展以及形成過(guò)程中培養學(xué)生觀(guān)察、聯(lián)想、歸納、分析、綜合和邏輯推理的能力。
。2)利用以退求進(jìn)的思維策略,遵循從特殊到一般的認知規律,讓學(xué)生在實(shí)踐中通過(guò)觀(guān)察、嘗試、分析、類(lèi)比的方法導出等差數列的求和公式,培養學(xué)生類(lèi)比思維能力。
。3)通過(guò)對公式從不同角度、不同側面的剖析,培養學(xué)生思維的靈活性,提高學(xué)生分析問(wèn)題和解決問(wèn)題的能力。
C、情感目標:(數學(xué)文化價(jià)值)
。1)公式的發(fā)現反映了普遍性寓于特殊性之中,從而使學(xué)生受到辯證唯物主義思想的熏陶。
。2)通過(guò)公式的運用,樹(shù)立學(xué)生"大眾教學(xué)"的思想意識。
。3)通過(guò)生動(dòng)具體的現實(shí)問(wèn)題,令人著(zhù)迷的數學(xué)史,激發(fā)學(xué)生探究的興趣和欲望,樹(shù)立學(xué)生求真的勇氣和自信心,增強學(xué)生學(xué)好數學(xué)的心理體驗,產(chǎn)生熱愛(ài)數學(xué)的情感。
說(shuō)教學(xué)重點(diǎn):
等差數列前n項和的公式。
說(shuō)教學(xué)難點(diǎn):
等差數列前n項和的公式的靈活運用。
說(shuō)教學(xué)方法:
啟發(fā)、討論、引導式。
教具:
現代教育多媒體技術(shù)。
教學(xué)過(guò)程
一、創(chuàng )設情景,導入新課。
師:上幾節,我們已經(jīng)掌握了等差數列的概念、通項公式及其有關(guān)性質(zhì),今天要進(jìn)一步研究等差數列的前n項和公式。提起數列求和,我們自然會(huì )想到德國偉大的數學(xué)家高斯"神速求和"的故事,小高斯上小學(xué)四年級時(shí),一次教師布置了一道數學(xué)習題:"把從1到100的自然數加起來(lái),和是多少?"年僅10歲的小高斯略一思索就得到答案5050,這使教師非常吃驚,那么高斯是采用了什么方法來(lái)巧妙地計算出來(lái)的呢?如果大家也懂得那樣巧妙計算,那你們就是二十世紀末的新高斯。(教師觀(guān)察學(xué)生的表情反映,然后將此問(wèn)題縮小十倍)。我們來(lái)看這樣一道一例題。
例1,計算:1+2+3+4+5+6+7+8+9+10。
這道題除了累加計算以外,還有沒(méi)有其他有趣的解法呢?小組討論后,讓學(xué)生自行發(fā)言解答。
生1:因為1+10=2+9=3+8=4+7=5+6,所以可湊成5個(gè)11,得到55。
生2:可設S=1+2+3+4+5+6+7+8+9+10,根據加法交換律,又可寫(xiě)成 S=10+9+8+7+6+5+4+3+2+1。
上面兩式相加得2S=11+10+。。。。。。+11=10×11=110
10個(gè)
所以我們得到S=55,
即1+2+3+4+5+6+7+8+9+10=55
師:高斯神速計算出1到100所有自然數的各的方法,和上述兩位同學(xué)的方法相類(lèi)似。
理由是:1+100=2+99=3+98=。。。。。。=50+51=101,有50個(gè)101,所以1+2+3+。。。。。。+100=50×101=5050。請同學(xué)們想一下,上面的方法用到等差數列的哪一個(gè)性質(zhì)呢?
生3:數列{an}是等差數列,若m+n=p+q,則am+an=ap+aq。
二、教授新課(嘗試推導)
師:如果已知等差數列的首項a1,項數為n,第n項an,根據等差數列的性質(zhì),如何來(lái)導出它的前n項和Sn計算公式呢?根據上面的例子同學(xué)們自己完成推導,并請一位學(xué)生板演。
生4:Sn=a1+a2+。。。。。。an—1+an也可寫(xiě)成
Sn=an+an—1+。。。。。。a2+a1
兩式相加得2Sn=(a1+an)+(a2+an—1)+。。。。。。(an+a1)
n個(gè)
=n(a1+an)
所以Sn=(I)
師:好!如果已知等差數列的首項為a1,公差為d,項數為n,則an=a1+(n—1)d代入公式(1)得
Sn=na1+ d(II)
上面(I)、(II)兩個(gè)式子稱(chēng)為等差數列的前n項和公式。公式(I)是基本的,我們可以發(fā)現,它可與梯形面積公式(上底+下底)×高÷2相類(lèi)比,這里的上底是等差數列的首項a1,下底是第n項an,高是項數n。引導學(xué)生總結:這些公式中出現了幾個(gè)量?(a1,d,n,an,Sn),它們由哪幾個(gè)關(guān)系聯(lián)系?[an=a1+(n—1)d,Sn==na1+ d];這些量中有幾個(gè)可自由變化?(三個(gè))從而了解到:只要知道其中任意三個(gè)就可以求另外兩個(gè)了。下面我們舉例說(shuō)明公式(I)和(II)的一些應用。
三、公式的應用(通過(guò)實(shí)例演練,形成技能)。
1、直接代公式(讓學(xué)生迅速熟悉公式,即用基本量例2、計算:
。1)1+2+3+。。。。。。+n
。2)1+3+5+。。。。。。+(2n—1)
。3)2+4+6+。。。。。。+2n
。4)1—2+3—4+5—6+。。。。。。+(2n—1)—2n
請同學(xué)們先完成(1)—(3),并請一位同學(xué)回答。
生5:直接利用等差數列求和公式(I),得
。1)1+2+3+。。。。。。+n=
。2)1+3+5+。。。。。。+(2n—1)=
。3)2+4+6+。。。。。。+2n==n(n+1)
師:第(4)小題數列共有幾項?是否為等差數列?能否直接運用Sn公式求解?若不能,那應如何解答?小組討論后,讓學(xué)生發(fā)言解答。
生6:(4)中的數列共有2n項,不是等差數列,但把正項和負項分開(kāi),可看成兩個(gè)等差數列,所以
原式=[1+3+5+。。。。。。+(2n—1)]—(2+4+6+。。。。。。+2n)
=n2—n(n+1)=—n
生7:上題雖然不是等差數列,但有一個(gè)規律,兩項結合都為—1,故可得另一解法:
原式=—1—1—。。。。。!1=—n
n個(gè)
師:很好!在解題時(shí)我們應仔細觀(guān)察,尋找規律,往往會(huì )尋找到好的方法。注意在運用Sn公式時(shí),要看清等差數列的項數,否則會(huì )引起錯解。
例3、(1)數列{an}是公差d=—2的等差數列,如果a1+a2+a3=12,a8+a9+a10=75,求a1,d,S10。
生8:(1)由a1+a2+a3=12得3a1+3d=12,即a1+d=4
又∵d=—2,∴a1=6
∴S12=12 a1+66×(—2)=—60
生9:(2)由a1+a2+a3=12,a1+d=4
a8+a9+a10=75,a1+8d=25
解得a1=1,d=3 ∴S10=10a1+=145
師:通過(guò)上面例題我們掌握了等差數列前n項和的公式。在Sn公式有5個(gè)變量。已知三個(gè)變量,可利用構造方程或方程組求另外兩個(gè)變量(知三求二),請同學(xué)們根據例3自己編題,作為本節的課外練習題,以便下節課交流。
師:(繼續引導學(xué)生,將第(2)小題改編)
、贁盗衶an}等差數列,若a1+a2+a3=12,a8+a9+a10=75,且Sn=145,求a1,d,n
、谌舸祟}不求a1,d而只求S10時(shí),是否一定非來(lái)求得a1,d不可呢?引導學(xué)生運用等差數列性質(zhì),用整體思想考慮求a1+a10的值。
2、用整體觀(guān)點(diǎn)認識Sn公式。
例4,在等差數列{an}, (1)已知a2+a5+a12+a15=36,求S16;(2)已知a6=20,求S11。(教師啟發(fā)學(xué)生解)
師:來(lái)看第(1)小題,寫(xiě)出的計算公式S16==8(a1+a6)與已知相比較,你發(fā)現了什么?
生10:根據等差數列的性質(zhì),有a1+a16=a2+a15=a5+a12=18,所以S16=8×18=144。
師:對。ê(jiǎn)單小結)這個(gè)題目根據已知等式是不能直接求出a1,a16和d的,但由等差數列的性質(zhì)可求a1與an的和,于是這個(gè)問(wèn)題就得到解決。這是整體思想在解數學(xué)問(wèn)題的體現。
師:由于時(shí)間關(guān)系,我們對等差數列前n項和公式Sn的運用一一剖析,引導學(xué)生觀(guān)察當d≠0時(shí),Sn是n的二次函數,那么從二次(或一次)的函數的觀(guān)點(diǎn)如何來(lái)認識Sn公式后,這留給同學(xué)們課外繼續思考。
最后請大家課外思考Sn公式(1)的逆命題:
已知數列{an}的前n項和為Sn,若對于所有自然數n,都有Sn=。數列{an}是否為等差數列,并說(shuō)明理由。
四、小結與作業(yè)。
師:接下來(lái)請同學(xué)們一起來(lái)小結本節課所講的內容。
生11:1、用倒序相加法推導等差數列前n項和公式。
2、用所推導的兩個(gè)公式解決有關(guān)例題,熟悉對Sn公式的運用。
生12:1、運用Sn公式要注意此等差數列的項數n的值。
2、具體用Sn公式時(shí),要根據已知靈活選擇公式(I)或(II),掌握知三求二的解題通法。
3、當已知條件不足以求此項a1和公差d時(shí),要認真觀(guān)察,靈活應用等差數列的有關(guān)性質(zhì),看能否用整體思想的方法求a1+an的值。
師:通過(guò)以上幾例,說(shuō)明在解題中靈活應用所學(xué)性質(zhì),要糾正那種不明理由盲目套用公式的學(xué)習方法。同時(shí)希望大家在學(xué)習中做一個(gè)有心人,去發(fā)現更多的性質(zhì),主動(dòng)積極地去學(xué)習。
本節所滲透的數學(xué)方法;觀(guān)察、嘗試、分析、歸納、類(lèi)比、特定系數等。
數學(xué)思想:類(lèi)比思想、整體思想、方程思想、函數思想等。
作業(yè):P49:13、14、15、17
高中數學(xué)說(shuō)課稿 篇3
各位老師:
今天我說(shuō)課的題目是《條件語(yǔ)句》,內容選自于新課程人教A版必修3第一章第二節,課時(shí)安排為一個(gè)課時(shí)。下面我將從教材分析、教學(xué)目標分析、教學(xué)方法與手段分析、教學(xué)過(guò)程分析等四大方面來(lái)闡述我對這節課的分析和設計:
一、教材分析
1.教材所處的地位和作用
在此之前,學(xué)生已學(xué)習了算法的概念、程序框圖與算法的基本邏輯結構、輸入語(yǔ)句、輸出語(yǔ)句和賦值語(yǔ)句,這為過(guò)渡到本節的學(xué)習起著(zhù)鋪墊作用。這一節課主要的內容為條件語(yǔ)句表示方法、結構以及用法。條件語(yǔ)句與程序圖中的條件結構相對應,它是五種基本算法語(yǔ)句中的一種,。通過(guò)本節課的學(xué)習,學(xué)生將更加了解算法語(yǔ)句,并能用更全面的眼光看待前面學(xué)過(guò)的語(yǔ)句,并為以后的學(xué)習作好必要的準備。本節課對學(xué)生算法語(yǔ)言能力、有條理的思考與清晰地表達的能力,邏輯思維能力的綜合提升具有重要作用。
2.教學(xué)的重點(diǎn)和難點(diǎn)
重點(diǎn):條件語(yǔ)句的表示方法、結構和用法;用條件語(yǔ)句表示算法。
難點(diǎn):理解條件語(yǔ)句的表示方法、結構和用法。
二、教學(xué)目標分析
1.知識與技能目標:
、耪_理解條件語(yǔ)句的概念,并掌握其結構。
、茣(huì )應用條件語(yǔ)句編寫(xiě)程序。
2.過(guò)程與方法目標:
、磐ㄟ^(guò)實(shí)例,發(fā)展對解決具體問(wèn)題的過(guò)程與步驟進(jìn)行分析的能力。
、仆ㄟ^(guò)模仿,操作、探索、經(jīng)歷設計算法、設計框圖、編寫(xiě)程序以解決具體問(wèn)題的過(guò)程,發(fā)展應用算法的能力。
、窃诮鉀Q具體問(wèn)題的過(guò)程中學(xué)習條件語(yǔ)句,感受算法的重要意義。
3.情感,態(tài)度和價(jià)值觀(guān)目標
、拍芡ㄟ^(guò)具體實(shí)例,感受和體會(huì )算法思想在解決具體問(wèn)題中的意義,進(jìn)一步體會(huì )算法思想的重要性,體驗算法的有效性,增進(jìn)對數學(xué)的了解,形成良好的數學(xué)學(xué)習情感,增強學(xué)習數學(xué)的樂(lè )趣。
、仆ㄟ^(guò)感受和認識現代信息技術(shù)在解決數學(xué)問(wèn)題中的重要作用和威力,形成自覺(jué)地將數學(xué)理論和現代信息技術(shù)結合的思想。
、窃诰帉(xiě)程序解決問(wèn)題的過(guò)程中,逐步養成扎實(shí)嚴謹的科學(xué)態(tài)度。
三、教學(xué)方法與手段分析
1.教學(xué)方法:根據本節內容邏輯性強,學(xué)生不易理解的特點(diǎn),本節教學(xué)采用啟發(fā)式教學(xué),輔以觀(guān)察法、發(fā)現法、練習法、講解法。采用這種方法的原因是學(xué)生的邏輯能力不是很強,只能通過(guò)對實(shí)例的認真領(lǐng)會(huì )及一定的練習才能掌握本節知識。
2.教學(xué)手段:運用計算機、圖形計算器輔助教學(xué)
四、教學(xué)過(guò)程分析
1.創(chuàng )設情境(約4分鐘)
首先,我要求學(xué)生們編寫(xiě)程序,輸入一元二次方程
的系數,輸出它的實(shí)數根。這樣可以把教學(xué)內容轉化為具有潛在意義的問(wèn)題,讓學(xué)生產(chǎn)生強烈的問(wèn)題意識,因為要解決這一問(wèn)題,根據我們之前所學(xué)的三種算法語(yǔ)句是無(wú)法解決的,這樣就引出今天我們所要學(xué)習的內容。
2.探究新知(約8分鐘)
為了引入概念,我首先給出了一個(gè)基本的應用條件語(yǔ)句能夠解決的例題:
例1 編寫(xiě)一個(gè)程序,求實(shí)數x的絕對值。
整個(gè)過(guò)程由師生共同分析完成。老師要引導學(xué)生分析、研究例題中的兩個(gè)程序,既要讓學(xué)生們看到已知的三種語(yǔ)句,更要注意到未知的語(yǔ)句,即條件語(yǔ)句?偨Y上述例題的程序可得出條件語(yǔ)句的兩種一般格式,接下來(lái)由師生共同對這兩種格式進(jìn)行研究.
3.知識應用(約15分鐘)
此環(huán)節有兩個(gè)例題
例2 編寫(xiě)程序,寫(xiě)出輸入兩個(gè)數a和b,將較大的數打印出來(lái)
例3 編寫(xiě)程序,使任意輸入的3個(gè)整數按從大到小的順序輸出.
先把解決問(wèn)題的思路用程序框圖表示出來(lái),然后再根據程序框圖給出的算法步驟,逐步把算法用對應的程序語(yǔ)句表達出來(lái)。(程序框圖先由學(xué)生討論,再統一,然后利用圖形計算器演示,學(xué)生會(huì )驚喜的發(fā)現:自己也是個(gè)編程高手了!這樣可以激發(fā)學(xué)生們的學(xué)習興趣)
4.練習鞏固(約4分鐘)
課本第30頁(yè)第3題
練習可鞏固學(xué)生對知識的理解,也可在練習中發(fā)現問(wèn)題,使問(wèn)題得到及時(shí)的解決。
5.課堂小結(約5分鐘)
條件語(yǔ)句的步驟、結構及功能.
知識性?xún)热莸男〗Y,可把課堂教學(xué)傳授的知識盡快化為學(xué)生的素質(zhì);數學(xué)思想方法的小結,可使學(xué)生更深刻地理解數學(xué)思想方法在解題中的地位和應用
6.布置作業(yè)
課本練習第3、4題
[設計意圖]課后作業(yè)的布置是為了檢驗學(xué)生對本節課內容的理解和運用程度以及實(shí)際接受情況,并促使學(xué)生進(jìn)一步鞏固和掌握所學(xué)內容。對作業(yè)實(shí)施分層設置,分必做和選做,利于拓展學(xué)生的自主發(fā)展的空間。
7.板書(shū)設計
1.2.2條件語(yǔ)句
1、條件語(yǔ)句的一般格式
。1)IF-THEN-ELSE語(yǔ)句
格式: 框圖:
(2)IF-THEN語(yǔ)句
格式: 框圖:
2、小結
。1)
。2)
。3)
2、例1 引例
例2 例4
例3
高中數學(xué)說(shuō)課稿 篇4
一、教材分析
1、教材內容
本節課是蘇教版第二章《函數概念和基本初等函數Ⅰ》§2.1.3函數簡(jiǎn)單性質(zhì)的第一課時(shí),該課時(shí)主要學(xué)習增函數、減函數的定義,以及應用定義解決一些簡(jiǎn)單問(wèn)題.
2、教材所處地位、作用
函數的性質(zhì)是研究函數的基石,函數的單調性是首先研究的一個(gè)性質(zhì).通過(guò)對本節課的學(xué)習,讓學(xué)生領(lǐng)會(huì )函數單調性的概念、掌握證明函數單調性的步驟,并能運用單調性知識解決一些簡(jiǎn)單的實(shí)際問(wèn)題.通過(guò)上述活動(dòng),加深對函數本質(zhì)的認識.函數的單調性既是學(xué)生學(xué)過(guò)的函數概念的延續和拓展,又是后續研究指數函數、對數函數、三角函數的單調性的基礎.此外在比較數的大小、函數的定性分析以及相關(guān)的數學(xué)綜合問(wèn)題中也有廣泛的應用,它是整個(gè)高中數學(xué)中起著(zhù)承上啟下作用的核心知識之一.從方法論的角度分析,本節教學(xué)過(guò)程中還滲透了探索發(fā)現、數形結合、歸納轉化等數學(xué)思想方法.
3、教學(xué)目標
。1)知識與技能:使學(xué)生理解函數單調性的概念,掌握判別函數單調性
的方法;
。2)過(guò)程與方法:從實(shí)際生活問(wèn)題出發(fā),引導學(xué)生自主探索函數單調性的概念,應用圖象和單調性的定義解決函數單調性問(wèn)題,讓學(xué)生領(lǐng)會(huì )數形結合的數學(xué)思想方法,培養學(xué)生發(fā)現問(wèn)題、分析問(wèn)題、解決問(wèn)題的能力.
。3)情感態(tài)度價(jià)值觀(guān):讓學(xué)生體驗數學(xué)的科學(xué)功能、符號功能和工具功能,培養學(xué)生直覺(jué)觀(guān)察、探索發(fā)現、科學(xué)論證的良好的`數學(xué)思維品質(zhì).
4、重點(diǎn)與難點(diǎn)
教學(xué)重點(diǎn)(1)函數單調性的概念;
。2)運用函數單調性的定義判斷一些函數的單調性.
教學(xué)難點(diǎn)(1)函數單調性的知識形成;
。2)利用函數圖象、單調性的定義判斷和證明函數的單調性.
二、教法分析與學(xué)法指導
本節課是一節較為抽象的數學(xué)概念課,因此,教法上要注意:
1、通過(guò)學(xué)生熟悉的實(shí)際生活問(wèn)題引入課題,為概念學(xué)習創(chuàng )設情境,拉近數學(xué)與現實(shí)的距離,激發(fā)了學(xué)生求知欲,調動(dòng)了學(xué)生主體參與的積極性.
2、在運用定義解題的過(guò)程中,緊扣定義中的關(guān)鍵語(yǔ)句,通過(guò)學(xué)生的主體參與,逐個(gè)完成對各個(gè)難點(diǎn)的突破,以獲得各類(lèi)問(wèn)題的解決.
3、在鼓勵學(xué)生主體參與的同時(shí),不可忽視教師的主導作用.具體體現在設問(wèn)、講評和規范書(shū)寫(xiě)等方面,要教會(huì )學(xué)生清晰的思維、嚴謹的推理,并成功地完成書(shū)面表達.
4、采用投影儀、多媒體等現代教學(xué)手段,增大教學(xué)容量和直觀(guān)性.
在學(xué)法上:
1、讓學(xué)生從問(wèn)題中質(zhì)疑、嘗試、歸納、總結、運用,培養學(xué)生發(fā)現問(wèn)題、研究問(wèn)題和解決問(wèn)題的能力.
2、讓學(xué)生利用圖形直觀(guān)啟迪思維,并通過(guò)正、反例的構造,來(lái)完成從感性認識到理性思維的一個(gè)飛躍.
三、 教學(xué)過(guò)程
教學(xué) 環(huán)節 | 教 學(xué) 過(guò) 程 | 設 計 意 圖 |
問(wèn)題 情境 | (播放中央電視臺天氣預報的音樂(lè )) 滿(mǎn)足在定義域上的單調性的討論. 2、重視學(xué)生發(fā)現的過(guò)程.如:充分暴露學(xué)生將函數圖象(形)的特征轉化為函數值(數)的特征的思維過(guò)程;充分暴露在正、反兩個(gè)方面探討活動(dòng)中,學(xué)生認知結構升華、發(fā)現的過(guò)程. 3、重視學(xué)生的動(dòng)手實(shí)踐過(guò)程.通過(guò)對定義的解讀、鞏固,讓學(xué)生動(dòng)手去實(shí)踐運用定義. 4、重視課堂問(wèn)題的設計.通過(guò)對問(wèn)題的設計,引導學(xué)生解決問(wèn)題. |
高中數學(xué)說(shuō)課稿 篇5
各位評委老師,大家好!
我是本科數學(xué)**號選手,今天我要進(jìn)行說(shuō)課的課題是高中數學(xué)必修一第一章第三節第一課時(shí)《函數單調性與最大(。┲怠罚ǹ梢栽谶@時(shí)候板書(shū)課題,以緩解緊張)。我將從教材分析;教學(xué)目標分析;教法、學(xué)法;教學(xué)過(guò)程;教學(xué)評價(jià)五個(gè)方面來(lái)陳述我對本節課的設計方案。懇請在座的專(zhuān)家評委批評指正。
一、教材分析
1、 教材的地位和作用
。1)本節課主要對函數單調性的學(xué)習;
。2)它是在學(xué)習函數概念的基礎上進(jìn)行學(xué)習的,同時(shí)又為基本初等函數的學(xué)習奠定了基礎,所以他在教材中起著(zhù)承前啟后的重要作用;(可以看看這一課題的前后章節來(lái)寫(xiě))
。3)它是歷年高考的熱點(diǎn)、難點(diǎn)問(wèn)題
。ǜ鶕唧w的課題改變就行了,如果不是熱點(diǎn)難點(diǎn)問(wèn)題就刪掉)
2、 教材重、難點(diǎn)
重點(diǎn):函數單調性的定義
難點(diǎn):函數單調性的證明
重難點(diǎn)突破:在學(xué)生已有知識的基礎上,通過(guò)認真觀(guān)察思考,并通過(guò)小組合作探究的辦法來(lái)實(shí)現重難點(diǎn)突破。(這個(gè)必須要有)
3.學(xué)情分析
高一學(xué)生正處于以感性思維為主的年齡階段,而且思維逐步地從感性思維過(guò)渡到理性思維,并由此向邏輯思維發(fā)展,但學(xué)生思維不成熟、不嚴密、意志力薄弱,故而整個(gè)教學(xué)環(huán)節總是創(chuàng )設恰當的問(wèn)題情境,引導學(xué)生積極思考,培養他們的邏輯思維能力。從學(xué)生的認知結構來(lái)看,他們只能根據函數的圖象觀(guān)察出“隨著(zhù)自變量的增大函數值增大”等變化趨勢,所以在教學(xué)中要充分利用好函數圖象的直觀(guān)性,發(fā)揮好多媒體教學(xué)的優(yōu)勢;由于學(xué)生在概念的掌握上缺少系統性、嚴謹性,在教學(xué)中注意加強.
二、教學(xué)目標
知識目標:
。1)函數單調性的定義
。2)函數單調性的證明
能力目標:
培養學(xué)生全面分析、抽象和概括的能力,以及了解由簡(jiǎn)單到復雜,由特殊到一般的化歸思想
情感目標:
培養學(xué)生勇于探索的精神和善于合作的意識
。ㄟ@樣的教學(xué)目標設計更注重教學(xué)過(guò)程和情感體驗,立足教學(xué)目標多元化)
三、教法學(xué)法分析
1、教法分析
“教必有法而教無(wú)定法”,只有方法得當才會(huì )有效。新課程標準之處教師是教學(xué)的組織者、引導者、合作者,在教學(xué)過(guò)程要充分調動(dòng)學(xué)生的積極性、主動(dòng)性。本著(zhù)這一原則,在教學(xué)過(guò)程中我主要采用以下教學(xué)方法:開(kāi)放式探究法、啟發(fā)式引導法、小組合作討論法、反饋式評價(jià)法
2、學(xué)法分析
“授人以魚(yú),不如授人以漁”,最有價(jià)值的知識是關(guān)于方法的只是。學(xué)生作為教學(xué)活動(dòng)的主題,在學(xué)習過(guò)程中的參與狀態(tài)和參與度是影響教學(xué)效果最重要的因素。在學(xué)法選擇上,我主要采用:自主探究法、觀(guān)察發(fā)現法、合作交流法、歸納總結法。
。ㄇ叭糠钟脮r(shí)控制在三分鐘以?xún),可適當刪減)
四、教學(xué)過(guò)程
1、以舊引新,導入新知
通過(guò)課前小研究讓學(xué)生自行繪制出一次函數f(x)=x和二次函數f(x)=x^2的圖像,并觀(guān)察函數圖象的特點(diǎn),總結歸納。通過(guò)課上小組討論歸納,引導學(xué)生發(fā)現,教師總結:一次函數f(x)=x的圖像在定義域是直線(xiàn)上升的,而二次函數f(x)=x^2的圖像是一個(gè)曲線(xiàn),在(-∞,0)上是下降的,而在(0,+∞)上是上升的。(適當添加手勢,這樣看起來(lái)更自然)
2、創(chuàng )設問(wèn)題,探索新知
緊接著(zhù)提出問(wèn)題,你能用二次函數f(x)=x^2表達式來(lái)描述函數在(-∞,0)的圖像?教師總結,并板書(shū),揭示函數單調性的定義,并注意強調可以利用作差法來(lái)判斷這個(gè)函數的單調性。
讓學(xué)生模仿剛才的表述法來(lái)描述二次函數f(x)=x^2在(0,+∞)的圖像,并找個(gè)別同學(xué)起來(lái)作答,規范學(xué)生的數學(xué)用語(yǔ)。
讓學(xué)生自主學(xué)習函數單調區間的定義,為接下來(lái)例題學(xué)習打好基礎。
3、 例題講解,學(xué)以致用
例1主要是對函數單調區間的鞏固運用,通過(guò)觀(guān)察函數定義在(—5,5)的圖像來(lái)找出函數的單調區間。這一例題主要以學(xué)生個(gè)別回答為主,學(xué)生回答之后通過(guò)互評來(lái)糾正答案,檢查學(xué)生對函數單調區間的掌握。強調單調區間一般寫(xiě)成半開(kāi)半閉的形式
例題講解之后可讓學(xué)生自行完成課后練習4,以學(xué)生集體回答的方式檢驗學(xué)生的學(xué)習效果。
例2是將函數單調性運用到其他領(lǐng)域,通過(guò)函數單調性來(lái)證明物理學(xué)的波意爾定理。這是歷年高考的熱點(diǎn)跟難點(diǎn)問(wèn)題,這一例題要采用教師板演的方式,來(lái)對例題進(jìn)行證明,以規范總結證明步驟。一設二差三化簡(jiǎn)四比較,注意要把f(x1)-f(x2)化簡(jiǎn)成和差積商的形式,再比較與0的大小。
學(xué)生在熟悉證明步驟之后,做課后練習3,并以小組為單位找部分同學(xué)上臺板演,其他同學(xué)在下面自行完成,并通過(guò)自評、互評檢查證明步驟。
4、歸納小結
本節課我們主要學(xué)習了函數單調性的定義及證明過(guò)程,并在教學(xué)過(guò)程中注重培養學(xué)生勇于探索的精神和善于合作的意識。
5、作業(yè)布置
為了讓學(xué)生學(xué)習不同的數學(xué),我將采用分層布置作業(yè)的方式:一組 習題1.3A組1、2、3 ,二組 習題1.3A組2、3、B組1、2
6、板書(shū)設計
我力求簡(jiǎn)潔明了地概括本節課的學(xué)習要點(diǎn),讓學(xué)生一目了然。
。ㄟ@部分最重要用時(shí)六到七分鐘,其中定義講解跟例題講解一定要說(shuō)明學(xué)生的活動(dòng))
五、教學(xué)評價(jià)
本節課是在學(xué)生已有知識的基礎上學(xué)習的,在教學(xué)過(guò)程中通過(guò)自主探究、合作交流,充分調動(dòng)學(xué)生的積極性跟主動(dòng)性,及時(shí)吸收反饋信息,并通過(guò)學(xué)生的自評、互評,讓內部動(dòng)機和外界刺激協(xié)調作用,促進(jìn)其數學(xué)素養不斷提高。
高中數學(xué)說(shuō)課稿 篇6
各位領(lǐng)導、專(zhuān)家、同仁:您們好!
我說(shuō)課的內容是高中數學(xué)第二冊(上冊)第七章《直線(xiàn)和圓的方程》中的第六節“曲線(xiàn)和方程”的第一課時(shí),下面我的說(shuō)課將從以下幾個(gè)方面進(jìn)行闡述:
一、教材分析
教材的地位和作用
“曲線(xiàn)和方程”這節教材揭示了幾何中的形與代數中的數相統一的關(guān)系,為“作形判數”與“就數論形”的相互轉化開(kāi)辟了途徑,這正體現了解析幾何這門(mén)課的基本思想,對全部解析幾何教學(xué)有著(zhù)深遠的影響。學(xué)生只有透徹理解了曲線(xiàn)和方程的意義,才算是尋得了解析幾何學(xué)習的入門(mén)之徑。如果以為學(xué)生不真正領(lǐng)悟曲線(xiàn)和方程的關(guān)系,照樣能求出方程、照樣能計算某些難題,因而可以忽視這個(gè)基本概念的教學(xué),這不能不說(shuō)是一種“舍本逐題”的偏見(jiàn),應該認識到這節“曲線(xiàn)和方程”的開(kāi)頭課是解析幾何教學(xué)的“重頭戲”!
根據以上分析,確立教學(xué)重點(diǎn)是:“曲線(xiàn)的方程”與“方程的曲線(xiàn)”的概念;難點(diǎn)是:怎樣利用定義驗證曲線(xiàn)是方程的曲線(xiàn),方程是曲線(xiàn)的方程。
二、教學(xué)目標
根據教學(xué)大綱的要求以及本教材的地位和作用,結合高二學(xué)生的認知特點(diǎn)確定教學(xué)目標如下:
知識目標:
1、了解曲線(xiàn)上的點(diǎn)與方程的解之間的一一對應關(guān)系;
2、初步領(lǐng)會(huì )“曲線(xiàn)的方程”與“方程的曲線(xiàn)”的概念;
3、學(xué)會(huì )根據已有的情景資料找規律,進(jìn)而分析、判斷、歸納結論;
4、強化“形”與“數”一致并相互轉化的思想方法。
能力目標:
1、通過(guò)直線(xiàn)方程的引入,加強學(xué)生對方程的解和曲線(xiàn)上的點(diǎn)的一一對應關(guān)系的認識;
2、在形成曲線(xiàn)和方程的概念的教學(xué)中,學(xué)生經(jīng)歷觀(guān)察、分析、討論等數學(xué)活動(dòng)過(guò)程,探索出結論,并能有條理的闡述自己的觀(guān)點(diǎn);
3、能用所學(xué)知識理解新的概念,并能運用概念解決實(shí)際問(wèn)題,從中體會(huì )轉化化歸的思想方法,提高思維品質(zhì),發(fā)展應用意識。
情感目標:
1、通過(guò)概念的引入,讓學(xué)生感受從特殊到一般的認知規律;
2、通過(guò)反例辨析和問(wèn)題解決,培養合作交流、獨立思考等良好的個(gè)性品質(zhì),以及勇于批判、敢于創(chuàng )新的科學(xué)精神。
三、重難點(diǎn)突破
“曲線(xiàn)的方程”與“方程的曲線(xiàn)”的概念是本節的重點(diǎn),這是由于本節課是由直觀(guān)表象上升到抽象概念的過(guò)程,學(xué)生容易對定義中為什么要規定兩個(gè)關(guān)系產(chǎn)生困惑,原因是不理解兩者缺一都將擴大概念的外延。由于學(xué)生已經(jīng)具備了用方程表示直線(xiàn)、拋物線(xiàn)等實(shí)際模型,積累了感性認識的基礎,所以可用舉反例的方法來(lái)解決困惑,通過(guò)反例揭示“兩者缺一”與直覺(jué)的矛盾,從而又促使學(xué)生對概念表述的嚴密性進(jìn)行探索,自然地得出定義。為了強化其認識,又決定用集合相等的概念來(lái)解釋曲線(xiàn)和方程的對應關(guān)系,并以此為工具來(lái)分析實(shí)例,這將有助于學(xué)生的理解,有助于學(xué)生通其法,知其理。
怎樣利用定義驗證曲線(xiàn)是方程的曲線(xiàn),方程是曲線(xiàn)的方程是本節的難點(diǎn)。因為學(xué)生在作業(yè)中容易犯想當然的錯誤,通常在由已知曲線(xiàn)建立方程的時(shí)候,不驗證方程的解為坐標的點(diǎn)在曲線(xiàn)上,就斷然得出所求的是曲線(xiàn)方程。這種現象在高考中也屢見(jiàn)不鮮。為了突破難點(diǎn),本節課設計了三種層次的問(wèn)題,幻燈片9是概念的直接運用,幻燈片10是概念的逆向運用,幻燈片11是證明曲線(xiàn)的方程。通過(guò)這些例題讓學(xué)生再一次體會(huì )“二者”缺一不可。
四、學(xué)情分析
此前,學(xué)生已知,在建立了直角坐標系后平面內的點(diǎn)和有序實(shí)數對之間建立了一一對應關(guān)系,已有了用方程(有時(shí)以函數式的形式出現)表示曲線(xiàn)的感性認識(特別是二元一次方程表示直線(xiàn)),現在要進(jìn)一步研究平面內的曲線(xiàn)和含有兩個(gè)變數的方程之間的關(guān)系,是由直觀(guān)表象上升到抽象概念的過(guò)程,對學(xué)生有相當大的難度。學(xué)生在學(xué)習時(shí)容易產(chǎn)生的問(wèn)題是,不理解“曲線(xiàn)上的點(diǎn)的坐標都是方程的解”和“以這個(gè)方程的解為坐標的點(diǎn)都是曲線(xiàn)上的點(diǎn)”這兩句話(huà)在揭示“曲線(xiàn)和方程”關(guān)系時(shí)各自所起的作用。本節課的教學(xué)目標也只能是初步領(lǐng)會(huì ),要求學(xué)生能答出曲線(xiàn)和方程間必須滿(mǎn)足兩個(gè)關(guān)系時(shí)才能稱(chēng)作“曲線(xiàn)的方程”和“方程的曲線(xiàn)”,兩者缺一不可,并能借助實(shí)例指出兩個(gè)關(guān)系的區別。
五、教法分析
新課程強調教師要調整自己的角色,改變傳統的教育方式,教師要由傳統意義上的知識的傳授者和學(xué)生的管理者,轉變?yōu)閷W(xué)生發(fā)展的促進(jìn)者和幫助者,簡(jiǎn)單的教書(shū)匠轉變?yōu)閷?shí)踐的研究者,或研究的實(shí)踐者,在教育方式上,也要體現出以人為本,以學(xué)生為中心,讓學(xué)生真正成為學(xué)習的主人而不是知識的奴隸,基于此,本節課遵循了概念學(xué)習的四個(gè)基本步驟,重點(diǎn)采用了問(wèn)題探究和啟發(fā)式相結合的教學(xué)方法。
從實(shí)例、到類(lèi)比、到推廣的問(wèn)題探究,它對激發(fā)學(xué)生學(xué)習興趣,培養學(xué)習能力都十分有利。啟發(fā)引導學(xué)生得出概念,深化概念,并應用它去討論、研究和解決問(wèn)題。在生生合作,師生互動(dòng)中解決問(wèn)題,為提高學(xué)生分析問(wèn)題、解決問(wèn)題的能力打下了基礎。
利用多媒體輔助教學(xué),節省了時(shí)間,增大了信息量,增強了直觀(guān)形象性。
六、學(xué)法分析
基礎教育課程改革要求加強學(xué)習方式的改變,提倡學(xué)習方式的多樣化,各學(xué)科課程通過(guò)引導學(xué)生主動(dòng)參與,親身實(shí)踐,獨立思考,合作探究,發(fā)展學(xué)生搜集處理信息的能力,獲取新知識的能力,分析和解決問(wèn)題的能力,以及交流合作的能力,基于此,本節課從實(shí)例引入→類(lèi)比→推廣→得概念→概念挖掘深化→具體應用→作業(yè)中的研究性問(wèn)題的思考,始終讓學(xué)生主動(dòng)參與,親身實(shí)踐,獨立思考,與合作探究相結合,在生生合作,師生互動(dòng)中,使學(xué)生真正成為知識的發(fā)現者和知識的研究者。
七、教學(xué)過(guò)程分析
1、感性認識階段——以舊帶新、提出課題
高中數學(xué)說(shuō)課稿 篇7
一、說(shuō)教材
1、 教材的地位和作用
《集合的概念》是人教版第一章的內容(中職數學(xué))。本節課的主要內容:集合以及集合有關(guān)的概念,元素與集合間的關(guān)系。初中數學(xué)課本中已現了一些數和點(diǎn)的集合,如:自然數的集合、有理數的集合、不等式解的集合等,但學(xué)生并不清楚“集合”在數學(xué)中的含義,集合是一個(gè)基礎性的概念,也是也是中職數學(xué)的開(kāi)篇,是我們后續學(xué)習的重要工具,如:用集合的語(yǔ)言表示函數的定義域、值域、方程與不等式的解集,曲線(xiàn)上點(diǎn)的集合等。通過(guò)本章節的學(xué)習,能讓學(xué)生領(lǐng)會(huì )到數學(xué)語(yǔ)言的簡(jiǎn)潔和準確性,幫助學(xué)生學(xué)會(huì )用集合的語(yǔ)言描述客觀(guān),發(fā)展學(xué)生運用數學(xué)語(yǔ)言交流的能力。
2、 教學(xué)目標
。1)知識目標:a、通過(guò)實(shí)例了解集合的含義,理解集合以及有關(guān)概念;
b、初步體會(huì )元素與集合的“屬于”關(guān)系,掌握元素與集合關(guān)系的表示方法。
。2)能力目標:a、讓學(xué)生感知數學(xué)知識與實(shí)際生活得密切聯(lián)系,培養學(xué)生解決實(shí)際的能力;
b、學(xué)會(huì )借助實(shí)例分析,探究數學(xué)問(wèn)題,發(fā)展學(xué)生的觀(guān)察歸納能力。
。3)情感目標:a、通過(guò)聯(lián)系生活,提高學(xué)生學(xué)習數學(xué)的積極性,形成積極的學(xué)習態(tài)度;
b、通過(guò)主動(dòng)探究,合作交流,感受探索的樂(lè )趣和成功的體驗,體會(huì )數學(xué)的理性和嚴謹。
3、重點(diǎn)和難點(diǎn)
重點(diǎn):集合的概念,元素與集合的關(guān)系。
難點(diǎn):準確理解集合的概念。
二、學(xué)情分析(說(shuō)學(xué)情)
對于中職生來(lái)說(shuō),學(xué)生的數學(xué)基礎相對薄弱,他們還沒(méi)具備一定的觀(guān)察、分析理解、解決實(shí)際問(wèn)題的能力,在運算能力、思維能力等方面參差不齊,學(xué)生學(xué)好數學(xué)的自信心不強,學(xué)習積極性不高,有厭學(xué)情緒。
三、說(shuō)教法
針對學(xué)生的實(shí)際情況,采用探究式教學(xué)法進(jìn)行教學(xué)。首先從學(xué)生較熟悉的實(shí)例出發(fā),提高學(xué)生的注意力和激發(fā)學(xué)生的學(xué)習興趣。在創(chuàng )設情境認知策略上給予適當的點(diǎn)撥和引導,引導學(xué)生主動(dòng)思、交流、討論,提出問(wèn)題。在此基礎上教師層層深入,啟發(fā)學(xué)生積極思維,逐步提升學(xué)生的數學(xué)學(xué)習能力。集合概念的形成遵循由感性到理性,由具體到抽象,便于學(xué)生的理解和掌握。
四、學(xué)習指導(說(shuō)學(xué)法)
教學(xué)的矛盾主要方面是學(xué)生的學(xué),學(xué)是中心,會(huì )學(xué)是目的,因此在教學(xué)中要不斷指導學(xué)生學(xué)會(huì )學(xué)習。根據數學(xué)的特點(diǎn)這節課主要是教學(xué)生動(dòng)腦思考、多訓練、勤鉆研的研討,這樣做增加了學(xué)生主動(dòng)參與的機會(huì ),增強了參與的意識,教學(xué)生獲取知識的途徑,思考問(wèn)題的方法,使學(xué)生成為教學(xué)的主體,進(jìn)而才能達到預期的教學(xué)目的和效果。
五、教學(xué)過(guò)程
1、引入新課:
a、創(chuàng )設情境,揭示本課主題,同時(shí)對集合的整體性有個(gè)初步的感性認識。
b、介紹集合論的創(chuàng )始者康托爾
2、究竟什么是集合?(實(shí)例探究)切合學(xué)生現有的認知水平, 以學(xué)生熟悉的事物(物體),以實(shí)際生活為背景進(jìn)行探究, 為本課教學(xué)創(chuàng )造出一種自然和諧的氛圍,充分調動(dòng)學(xué)生的學(xué)習熱情接待探究過(guò)程學(xué)生積極思考、交流、作答,教師針對學(xué)生的回答啟發(fā),引導學(xué)生尋找實(shí)例中的共同特征,培養學(xué)生觀(guān)察,總結能力范圍由具體到抽象,由感性到理性,為下面水到渠成的介紹集合概念做好鋪墊。
3、集合的概念,本課的重點(diǎn)。結合探究中的實(shí)例,讓學(xué)生說(shuō)出集合和元素各是什么?知識的呈現由抽象到具體進(jìn)一步熟悉元素與集合的概念,讓學(xué)生分清實(shí)際問(wèn)題中的集合和元素為后面學(xué)習兩者間的關(guān)系做好鋪墊。
教師在這一環(huán)節做好學(xué)習指導,確定的對象組成的整體叫集合,如果對象不確定,就不能確定為集合(舉例)加深對概念的理解。
4、 熟悉鞏固集合的概念通過(guò)例題,練習、幫助學(xué)生進(jìn)一步熟悉和理解集合的概念。
5、 集合的符號記法,為本節重點(diǎn)做好鋪墊。
6、 從實(shí)例入行手,探索元素和集合的關(guān)系,學(xué)生能用文字語(yǔ)言描述,如何用數學(xué)語(yǔ)言描述,給出元素與集合關(guān)系符號表示,在這個(gè)環(huán)節教師適當引導學(xué)生積極主動(dòng)參與到知識逐步形成過(guò)程,便于學(xué)生理解和掌握,落實(shí)本課的重點(diǎn),學(xué)習指導:⑴集合元素的確定。⑵理解兩符號的含義。
7、 思考交流本課的重要環(huán)節在課堂上給學(xué)生提供充分的活動(dòng)時(shí)間和空間。通過(guò)自由舉例,能深化概念。同時(shí)還能提升學(xué)生的分析能力表達自己見(jiàn)解的能力。
8、 從所舉的例子中抽象出數集的概念,并給出常見(jiàn)數集的記法。
9、 學(xué)生練習:通過(guò)練習,識記常見(jiàn)數集的記法,同時(shí)進(jìn)一步鞏固元素與集合間的關(guān)系。
10、知識的實(shí)際應用:
問(wèn)題不難,落實(shí)課本能力目標,培養學(xué)生運用數學(xué)的意識和能力初步培養學(xué)生應用集合的眼光觀(guān)看世界。
11、課堂小節
以學(xué)生小節為主教師幫助為輔,鞏固所學(xué)知識,幫助學(xué)生認識到要學(xué)會(huì )梳理所學(xué)內容,要學(xué)會(huì )總結反思,使學(xué)生的認識進(jìn)一步升華,培養學(xué)生的鬼納總結能力。
六、評價(jià)
教學(xué)評價(jià)的及時(shí)能有效調動(dòng)課堂氣氛,感染學(xué)生的情緒,對課堂教學(xué)發(fā)揮著(zhù)積極作用,教學(xué)過(guò)程遵重學(xué)生之間的差異培養學(xué)生應用集合的眼光看研究對象,注重過(guò)程評價(jià)與多元評價(jià)將教學(xué)評價(jià)貫穿于本堂課的每個(gè)教學(xué)環(huán)節。
七、教學(xué)反思
1、 通過(guò)現實(shí)生活中的實(shí)例,從特殊到一般,在具體感知基礎上得出集合的描述概念,便于學(xué)生理解接受。
2、 啟發(fā)探究教學(xué),營(yíng)造學(xué)生的學(xué)習氛圍,培養學(xué)生自主學(xué)習,合作交流的能力。
八、板書(shū)設計
高中數學(xué)說(shuō)課稿 篇8
一、教材分析:
《向量的加法》是《必修》4第二章第二單元中“平面向量的線(xiàn)性運算”的第一節課。本節內容有向量加法的平行四邊形法則、三角形法則及應用,向量加法的運算律及應用,大約需要1課時(shí)。向量的加法是向量的線(xiàn)性運算中最基本的一種運算,向量的加法及其幾何意義為后繼學(xué)習向量的減法運算及其幾何意義、向量的數乘運算及其幾何意義奠定了基礎;其中三角形法則適用于求任意多個(gè)向量的和,在空間向量與立體幾何中有很普遍的應用。所以本課在“平面向量”及“空間向量”中有很重要的地位。
二、學(xué)情分析:
學(xué)生在上節課中學(xué)習了向量的定義及表示,相等向量,平行向量等概念,知道向量可以自由移動(dòng),這是學(xué)習本節內容的基礎。學(xué)生對數的運算了如指掌,并且在物理中學(xué)過(guò)力的合成、位移的合成等矢量的加法,所以向量的加法可通過(guò)類(lèi)比數的加法、以所學(xué)的物理模型為背景引入,這樣做有利于學(xué)生更好地理解向量加法的意義,準確把握兩個(gè)加法法則的特點(diǎn)。
三、教學(xué)目的:
1、通過(guò)對向量加法的探究,使學(xué)生掌握向量加法的概念,結合物理學(xué)實(shí)際理解向量加法的意義。能正確領(lǐng)會(huì )向量加法的平行四邊形法則和三角形法則的幾何意義,并能運用法則作出兩個(gè)已知向量的和向量。
2、在應用活動(dòng)中,理解向量加法滿(mǎn)足交換律和結合律以及表述兩個(gè)運算律的幾何意義。掌握有特殊位置關(guān)系的兩個(gè)向量之和,比如共線(xiàn)向量,共起點(diǎn)向量、共終點(diǎn)向量等。
3、通過(guò)本節的學(xué)習,培養學(xué)生類(lèi)比、遷移、分類(lèi)、歸納等數學(xué)方面的能力。
四、教學(xué)重、難點(diǎn)
重點(diǎn):向量的加法法則。探究向量的加法法則并正確應用是本課的重點(diǎn)。兩個(gè)加法法則各有特點(diǎn),聯(lián)系緊密,你中有我,我中有你,實(shí)質(zhì)相同,但是三角形法則適用范圍更加廣泛,且簡(jiǎn)便易行,所以是詳講內容,平行四邊形法則在本課中所占份量略少于三角形法則。
難點(diǎn):對三角形法則的理解;方向相反的兩個(gè)向量的加法。主要是讓學(xué)生認識到三角形法則的實(shí)質(zhì)是:將已知向量首尾相接,而不是表示向量的有向線(xiàn)段之間必須構成三角形。
五、教學(xué)方法
本節采用以下教學(xué)方法:1、類(lèi)比:由數的加法運算類(lèi)比向量的加法運算。2、探究:由力的合成引入平行四邊形法則,在法則的運用中觀(guān)察圖形得出三角形法則,探求共線(xiàn)向量的加法,發(fā)現三角形法則適用于任意向量相加;通過(guò)圖形,觀(guān)察得出向量加法滿(mǎn)足交換律、結合律等,這些都體現探究式教學(xué)法的運用。3、講解與練習:對兩個(gè)法則特點(diǎn)的分析,例題都采取了引導與講解的方法,學(xué)生課堂完成教材中的練習。4、多媒體技術(shù)的運用,能直觀(guān)地表現向量的平移,相等向量的意義,更能說(shuō)清兩個(gè)法則的幾何意義及運算律。
六、數學(xué)思想的體現:
1、分類(lèi)的思想:總的來(lái)說(shuō)本課中向量的加法分為不共線(xiàn)向量及共線(xiàn)向量?jì)煞N形式,共線(xiàn)向量又分為方向相同與方向相反兩種情形,然后專(zhuān)門(mén)對零向量與任意向量相加作了規定,這樣對任意向量的加法都做了討論,線(xiàn)索清楚。
2、類(lèi)比思想:使之與數的加法進(jìn)行類(lèi)比,使學(xué)生對向量的加法不致于太陌生,既有似曾相識的感覺(jué),又能從對比中看出兩者的不同,效果較好。
3、歸納思想:主要體現在以下三個(gè)環(huán)節①學(xué)完平行四邊形法則和三角形法則后,歸納總結,對不共線(xiàn)向量相加,兩個(gè)法則都可以選用。②由共線(xiàn)向量的加法總結出三角形法則適用于任意兩個(gè)向量的相加,而三角形法則僅適用于不共線(xiàn)向量相加。③對向量加法的結合律和探討中,又使學(xué)生發(fā)現了三角形法則還適用于任意多個(gè)向量的加法。歸納思想在這三個(gè)環(huán)節中的運用,使得學(xué)生對兩個(gè)加法法則,尤其是三角形法則的理解,步步深入。
七、教學(xué)過(guò)程:
1、回顧舊知:本節要進(jìn)行向量的平移,且對向量加法分共線(xiàn)與不共線(xiàn)兩種情況,所以要復習向量、相等向量、共線(xiàn)向量等概念,這些都是新課學(xué)習中必要的知識鋪墊。
2、引入新課:
。1)平行四邊形法則的引入。
學(xué)生在物理學(xué)中雖然接觸過(guò)位移的合成,但是并沒(méi)有形成三角形法則的概念;而對平行四邊形法則學(xué)生已學(xué)過(guò),很熟悉。所以我決定由力的合成引入向量加法的平行四邊形法則。平行四邊形法則的特點(diǎn)是起點(diǎn)相同,但是物理中力的合成是在有相同的作用點(diǎn)的條件下合成的,引入到數學(xué)中向量加法的平行四邊形法則,所給出的圖形也是現成的平行四邊形,而學(xué)生剛學(xué)完相等向量,對相等向量的概念還沒(méi)有深刻的認識,易產(chǎn)生誤解:表示兩個(gè)已知向量的有向線(xiàn)段的起點(diǎn)必須在一起才能用平行四邊形法則,不在一起不能用。這時(shí)要通過(guò)講解例1,使學(xué)生認識到可以通過(guò)平移向量,使表示兩個(gè)向量的有向線(xiàn)段有共同的起點(diǎn)。這一點(diǎn)對理解及運用法則求兩向量的和很重要。
設計意圖:本著(zhù)從學(xué)生最熟悉、離學(xué)生最近的知識經(jīng)驗為接入點(diǎn),用學(xué)生熟知的方法來(lái)解決新的問(wèn)題——向量的加法,這樣新中有舊,學(xué)生容易接受,也使學(xué)科間的滲透發(fā)揮了作用,加深了學(xué)生對向量加法的平行四邊形法則的“起點(diǎn)相同”這一特點(diǎn)的認識,例1的講解使學(xué)生認識到當表示向量的有向線(xiàn)段的起點(diǎn)不在一起時(shí),須把起點(diǎn)移到一起,至此才能使學(xué)生完成對平行四邊形法則理解真正到位。
。2)三角形法則的引入。三角形法則沒(méi)有按照教材中利用位移的合成引入,而是從前面所講的平行四邊形法則的圖形中直接引入(如圖)。
所以這種把兩個(gè)向量相加的方法稱(chēng)為三角形法則。接下來(lái)用幻燈片完整展示三角形法則,同時(shí)法則的作法敘述、作圖過(guò)程對學(xué)生也起到了示例的作用。于是前面的例1還可以利用三角形法則來(lái)做。
這時(shí),總結出兩個(gè)不共線(xiàn)向量求和時(shí),平行四邊形法則與三角形法則都可以用。
設計意圖:由平行四邊形法則的圖形引入三角形法則,可以很清楚地使學(xué)生從向何意義上認識到兩個(gè)法則之間的密切聯(lián)系,理解它們的實(shí)質(zhì),而且銜接自然,能夠使學(xué)生對比地得出兩個(gè)法則的特點(diǎn)與實(shí)質(zhì),并對兩個(gè)法則的特點(diǎn)有較深刻的印象。
。3)共線(xiàn)向量的加法
方向相同的兩個(gè)向量相加,對學(xué)生來(lái)說(shuō)較易完成,“將它們接在一起,取它們的方向及長(cháng)度之和,作為和向量的方向與長(cháng)度!币龑W(xué)生分析作法,結果發(fā)現還是運用了三角形法則:首尾相接,方向由第一個(gè)向量的起點(diǎn)指向第二個(gè)向量的終點(diǎn)。
方向相反的兩個(gè)向量相加,對學(xué)生來(lái)說(shuō)是個(gè)難點(diǎn),首先從作圖上不知道怎樣做。但是學(xué)生學(xué)過(guò)有理數加法中的異號兩數相加:“異號兩數相加,用較大
的絕對值減去較小的絕對值,符號取絕對值較大的數的符號!鳖(lèi)比異號兩數相加,他們會(huì )用較長(cháng)的模減去較短的模,方向取模較長(cháng)的向量的方向。具體做法由老師引導學(xué)生嘗試運用三角形法則去做,發(fā)現結論正確。
反思過(guò)程,學(xué)生自然會(huì )想到方向相同的兩個(gè)向量相加,類(lèi)似于同號兩數相加。這說(shuō)明兩個(gè)共線(xiàn)向量相加依然可用三角形法則 通過(guò)以上幾個(gè)環(huán)節的討論,可以作個(gè)簡(jiǎn)單的小結:兩個(gè)不共線(xiàn)向量相加,可采用平行四邊形法則或三角形法則,而兩個(gè)共線(xiàn)向量相加在本課所學(xué)方法中只能用三角形法則,說(shuō)明三角形法則適用于任意兩個(gè)向量相加。
設計意圖:通過(guò)對共線(xiàn)向量加法的探討,拓寬了學(xué)生對三角形法則的認識,使得不同位置的向量相加都有了依據,并且采用類(lèi)比的方法,使學(xué)生對共線(xiàn)向量的加法,尤其是方向相反的兩個(gè)向量的加法更易于理解,可以化解難點(diǎn)。
。4)向量加法的運算律
、俳粨Q律:交換律是利用平行四邊形法則的圖形,又結合三角
形法則得出,理解起來(lái)沒(méi)什么困難,再一次強化了學(xué)生對兩個(gè)法則特點(diǎn)及實(shí)質(zhì)的認識。
、诮Y合律:結合律是通過(guò)三個(gè)向量首尾相接,先加前兩個(gè)再與第三個(gè)向量相加,和先加后兩個(gè)向量再與第一個(gè)向量相加所得結果相同。
接下來(lái)是對應的兩個(gè)練習,運用交換律與結合律計算向量的和。
設計意圖:運算律的引入給加法運算帶來(lái)方便,從后面的練習中學(xué)生能夠體會(huì )到這點(diǎn)。由結合律還使學(xué)生發(fā)現,多個(gè)向量相加,同樣可以運用三角形法則:將所加向量首尾相接,和向量的方向是由第一個(gè)向量的起點(diǎn)指向最后一個(gè)向量的終點(diǎn)。這樣使學(xué)生明白,三角形法則適用于任意多個(gè)向量相加。
3、小結
先由學(xué)生小結,檢查學(xué)生對本課重要知識的認識,也給學(xué)生一個(gè)概括本節知識的機會(huì ),然后用課件展示小結內容,使學(xué)生印象更深。
。1)平行四邊形法則:起點(diǎn)相同,適用于不共線(xiàn)向量的求和。
。2)三角形法則首尾相接,適用于任意多個(gè)向量的求和。
。3)運算律
高中數學(xué)說(shuō)課稿 篇9
一、教材分析
。ㄒ唬┑匚慌c作用
《冪函數》選自高一數學(xué)新教材必修1第2章第3節。是基本初等函數之一,它不僅有著(zhù)廣泛的實(shí)際應用,而且起著(zhù)承前啟后的作用。從教材的整體安排看,學(xué)習了解冪函數是為了讓學(xué)生進(jìn)一步獲得比較系統的函數知識和研究函數的方法,為今后學(xué)習三角函數等其他函數打下良好的基礎.在初中曾經(jīng)研究過(guò)y=x,y=x2,y=x—1三種冪函數。這節內容,是對初中有關(guān)內容的進(jìn)一步的概括、歸納與發(fā)展,是與冪有關(guān)知識的高度升華.本節內容之后, 將把指數函數,對數函數,冪函數科學(xué)的組織起來(lái),體現充滿(mǎn)在整個(gè)數學(xué)中的組織化,系統化的精神。讓學(xué)生了解系統研究一類(lèi)函數的方法.這節課要特別讓學(xué)生去體會(huì )研究的方法,以便能將該方法遷移到對其他函數的研究.
。ǘ⿲W(xué)情分析
。1)學(xué)生已經(jīng)接觸的函數,確立利用函數的定義域、值域、奇偶性、單調性研究一個(gè)函數的意識 ,已初步形成對數學(xué)問(wèn)題的合作探究能力。
。2)雖然前面學(xué)生已經(jīng)學(xué)會(huì )用描點(diǎn)畫(huà)圖的方法來(lái)繪制指數函數,對數函數圖像,但是對于冪函數的圖像畫(huà)法仍然缺乏感性認識。
。3)學(xué)生層次參差不齊,個(gè)體差異比較明顯。
二、目標分析
新課標指出“三維目標”是一個(gè)密切聯(lián)系的有機整體。
。ㄒ唬┙虒W(xué)目標
。1)知識與技能
、偈箤W(xué)生理解冪函數的概念,會(huì )畫(huà)冪函數的圖象。
、谧寣W(xué)生結合這幾個(gè)冪函數的圖象,理解冪函圖象的變化情況和性質(zhì)。
。2)過(guò)程與方法
、僮寣W(xué)生通過(guò)觀(guān)察、總結冪函數的性質(zhì),培養學(xué)生概括抽象和識圖能力。
、谑箤W(xué)生領(lǐng)會(huì )數形結合的數學(xué)思想方法,培養學(xué)生發(fā)現問(wèn)題、分析問(wèn)題、解決問(wèn)題的能力。
。3)情感態(tài)度與價(jià)值觀(guān)
、偻ㄟ^(guò)熟悉的例子讓學(xué)生消除對冪函數的陌生感從而引出概念,引起學(xué)生注意,激發(fā)學(xué)生的學(xué)習興趣。
、诶枚嗝襟w,了解冪函數圖象的變化規律,使學(xué)生認識到現代技術(shù)在數學(xué)認知過(guò)程中的作用,從而激發(fā)學(xué)生的學(xué)習欲望。
、叟囵B學(xué)生從特殊歸納出一般的意識,培養學(xué)生利用圖像研究函數奇偶性的能力。并引導學(xué)生發(fā)現數學(xué)中的對稱(chēng)美,讓學(xué)生在畫(huà)圖與識圖中獲得學(xué)習的快樂(lè )。
。ǘ┲攸c(diǎn)難點(diǎn)
根據我對本節課的內容的理解,我將重難點(diǎn)定為:
重點(diǎn):從五個(gè)具體的冪函數中認識概念和性質(zhì)
難點(diǎn):從冪函數的圖象中概括其性質(zhì)。
三、教法、學(xué)法分析
。ㄒ唬┙谭
教學(xué)過(guò)程是教師和學(xué)生共同參與的過(guò)程,教師要善于啟發(fā)學(xué)生自主性學(xué)習,充分調動(dòng)學(xué)生的積極性、主動(dòng)性,要有效地滲透數學(xué)思想方法,努力去提高學(xué)生素質(zhì)。根據這樣的原則和所要完成的教學(xué)目標,并為激發(fā)學(xué)生的學(xué)習興趣,我采用如下的教學(xué)方法。
1、引導發(fā)現比較法
因為有五個(gè)冪函數,所以可先通過(guò)學(xué)生動(dòng)手畫(huà)出函數的圖象,觀(guān)察它們的解析式和圖象并從式的角度和形的角度發(fā)現異同,并進(jìn)行比較,從而更深刻地領(lǐng)會(huì )冪函數概念以及五個(gè)冪函數的圖象與性質(zhì)。
2、借助信息技術(shù)輔助教學(xué)
由于多媒體信息技術(shù)能具有形象生動(dòng)易吸引學(xué)生注意的特點(diǎn),故此,可用多媒體制作引入情境,將學(xué)生引到這節課的學(xué)習中來(lái)。再利用《幾何畫(huà)板》畫(huà)出五個(gè)冪函數的圖象,為學(xué)生創(chuàng )設豐富的數形結合環(huán)境,幫助學(xué)生更深刻地理解冪函數概念以及在冪函數中指數的變化對函數圖象形狀和單調性的影響,并由此歸納冪函數的性質(zhì)。
3、練習鞏固討論學(xué)習法
這樣更能突出重點(diǎn),解決難點(diǎn),使學(xué)生既能夠進(jìn)行深入地獨立思考又能與同學(xué)進(jìn)行廣泛的交流與合作,這樣一來(lái)學(xué)生對這五個(gè)冪函數領(lǐng)會(huì )得會(huì )更加深刻,在這個(gè)過(guò)程中學(xué)生們分析問(wèn)題和解決問(wèn)題的能力得到進(jìn)一步的提高,班級整體學(xué)習氛氛圍也變得更加濃厚。
。ǘ⿲W(xué)法
本節課主要是通過(guò)對冪函數模型的特征進(jìn)行歸納,動(dòng)手探索冪函數的圖像,觀(guān)察發(fā)現其有關(guān)性質(zhì),再改變觀(guān)察角度發(fā)現奇偶函數的特征。重在動(dòng)手操作、觀(guān)察發(fā)現和歸納的過(guò)程。
由于冪函數在第一象限的特征是學(xué)生不容易發(fā)現的問(wèn)題,因此在教學(xué)過(guò)程中引導學(xué)生將抽象問(wèn)題具體化,借助多媒體進(jìn)行動(dòng)態(tài)演化,以形成較完整的知識結構。
四、教學(xué)過(guò)程分析
。ㄒ唬┙虒W(xué)過(guò)程設計
。1)創(chuàng )設情境,提出問(wèn)題。 新課標指出:“應該讓學(xué)生在具體生動(dòng)的情境中學(xué)習數學(xué)”。在本節課的教學(xué)中,從我們熟悉的生活情境中提出問(wèn)題,問(wèn)題的設計改變了傳統目的明確的設計方式,給學(xué)生最大的思考空間,充分體現學(xué)生主體地位。
問(wèn)題1:下列問(wèn)題中的函數各有什么共同特征?是否為指數函數?
由學(xué)生討論,總結,即可得出:p=w,s=a2,v=a,a=s1/2,v=t—1
這時(shí)學(xué)生觀(guān)察可能有些困難,老師提示可以用x表示自變量,用y表示函數值,上述函數式變成:
都是自變量的若干次冪的形式。都是形如
的函數。
揭示課題:今天這節課,我們就來(lái)研究:冪函數
。ㄒ唬┱n堂主要內容
。1)冪函數的概念
、賰绾瘮档亩x。
一般地,函數
叫做冪函數,其中x 是自變量,a是常數。
、趦绾瘮蹬c指數函數之間的區別。
冪函數——底數是自變量,指數是常數;
指數函數——指數是自變量,底數是常數。
。2)幾個(gè)常見(jiàn)冪函數的圖象和性質(zhì)
由同學(xué)們畫(huà)出下列常見(jiàn)的冪函數的圖象,并根據圖象將發(fā)現的性質(zhì)填入表格
根據上表的內容并結合圖象,總結函數的共同性質(zhì)。讓學(xué)生交流,老師結合學(xué)生的回答組織學(xué)生總結出性質(zhì)。
以上問(wèn)題的設計意圖:數形結合是一個(gè)重要的數學(xué)思想方法,它包含以數助形,和以形助數的思想。通過(guò)問(wèn)題設計讓學(xué)生著(zhù)手實(shí)際,借助行的生動(dòng)來(lái)闡明冪函數的性質(zhì)。
教師講評:冪函數的性質(zhì).
、偎械膬绾瘮翟冢0,+∞)上都有定義,并且圖像都過(guò)點(diǎn)(1,1).
、谌绻鸻>0,則冪函數的圖像通過(guò)原點(diǎn),并在區間〔0,+∞)上是增函數.
、廴绻鸻<0,則冪函數在(0,+∞)上是減函數,在第一象限內,當x從右邊趨向于原點(diǎn)時(shí),圖像在y軸右方無(wú)限地趨近y軸;當x趨向于+∞時(shí),圖像在x軸上方無(wú)限地趨近x軸.
、墚攁為奇數時(shí),冪函數為奇函數;當a為偶數時(shí),冪函數為偶函數。
以問(wèn)題設計為主,通過(guò)問(wèn)題,讓學(xué)生由已經(jīng)學(xué)過(guò)的指數函數,對數函數,描點(diǎn)作圖得到五個(gè)冪函數的圖像,但是我們應該知道繪制冪函數的圖像比繪制指數函數和對數函數的圖像更為復雜,因為冪函數隨著(zhù)冪指數的輕微變化會(huì )出現較大的變化,因此,在描點(diǎn)作圖之前,應引導學(xué)生對幾個(gè)特殊的冪函數的性質(zhì)先進(jìn)行初步的探究,如分析函數的定義域,奇偶性等,在根據研究結果和描點(diǎn)作圖畫(huà)出圖像,讓學(xué)生觀(guān)察所作圖像特征,并由圖象特征得到相應的函數性質(zhì),讓學(xué)生充分體會(huì )系統的研究方法。同時(shí)學(xué)生對于歸納性質(zhì)這一環(huán)節相對指數函數,對數函數的性質(zhì),學(xué)生會(huì )有更大的困難。因此,教學(xué)中只須對他們的圖像與基本性質(zhì)進(jìn)行認識,而不必在一般冪函數上作過(guò)多的引申和介紹。在教學(xué)中,采用從具體到一般,再從一般到具體的安排。
通過(guò)學(xué)生的主體參與,使學(xué)生深切體會(huì )到本節課的主要內容和思想方法,從而實(shí)現對知識識的再次深化。
。3)當堂訓練,鞏固深化
例題和練習題的選取應結合學(xué)生認知探究,鞏固本節課的重點(diǎn)知識,并能用知識加以運用。本節課選取主要選取了兩道例題。
例1是課本上的例題:證明f(x)=x1/2在(0,+∞)上是增函數。這題先從“形”的角度判斷函數的單調區間和單調性,再用到定義從“數”的角度對函數的單調性進(jìn)行推理論證,培養學(xué)生的數形結合的數學(xué)思想和解決問(wèn)題的專(zhuān)業(yè)素養。
例2是補充例題,主要培養學(xué)生根據體例構造出函數,并利用函數的性質(zhì)來(lái)解決問(wèn)題的能力,從而加深學(xué)生對冪函數及其性質(zhì)的理解。注意:由于學(xué)生對冪函數還不是很熟悉,所以在講評中要刻意體現出冪函數y=x1。3是增函數與y=x—5/4的圖像的畫(huà)法,即再一次讓學(xué)生體會(huì )根據解析式來(lái)畫(huà)圖像解題這一基本思路
。4)小結歸納,回顧反思。 小結歸納不僅是對知識的簡(jiǎn)單回顧,還要發(fā)揮學(xué)生的主體地位,從知識、方法、經(jīng)驗等方面進(jìn)行總結。我設計了三個(gè)問(wèn)題:
。1)通過(guò)本節課的學(xué)習,你學(xué)到了哪些知識?
。2)通過(guò)本節課的學(xué)習,你最大的體驗是什么?
。3)通過(guò)本節課的學(xué)習,你掌握了哪些技能?
。ǘ┳鳂I(yè)設計 作業(yè)分為必做題和選做題,必做題對本節課學(xué)生知識水平的反饋,選做題是對本節課內容的延伸與,注重知識的延伸與連貫,強調學(xué)以致用。通過(guò)作業(yè)設置,使不同層次的學(xué)生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學(xué)生飽滿(mǎn)的學(xué)習興趣,促進(jìn)學(xué)生自主發(fā)展、合作探究的學(xué)習氛圍的形成. 我設計了以下作業(yè):
。1)必做題
。2)選做題
。ㄈ┌鍟(shū)設計
板書(shū)要基本體現整堂課的內容與方法,體現課堂進(jìn)程,能簡(jiǎn)明扼要反映知識結構及其相互聯(lián)系;能指導教師的教學(xué)進(jìn)程、引導學(xué)生探索知識;通過(guò)使用幻燈片輔助板書(shū),節省課堂時(shí)間,使課堂進(jìn)程更加連貫。
五、評價(jià)分析
學(xué)生學(xué)習的結果評價(jià)當然重要,但是更重要的是學(xué)生學(xué)習的過(guò)程評價(jià)。我采用及時(shí)點(diǎn)評、延時(shí)點(diǎn)評與學(xué)生互評相結合,全面考查學(xué)生在知識、思想、能力等方面的發(fā)展情況,在質(zhì)疑探究的過(guò)程中,評價(jià)學(xué)生是否有積極的情感態(tài)度和頑強的理性精神,在概念反思過(guò)程中評價(jià)學(xué)生的歸納猜想能力是否得到發(fā)展,通過(guò)鞏固練習考查學(xué)生對冪函數是否有一個(gè)完整的集訓,并進(jìn)行及時(shí)的調整和補充。 以上就是我對本節課的理解和設計,敬請各位專(zhuān)家、評委批評指正。
謝謝!
【精選高中數學(xué)說(shuō)課稿模板匯編9篇】相關(guān)文章:
高中數學(xué)說(shuō)課稿(精選10篇)11-02
人教版高中數學(xué)必修一說(shuō)課稿 函數的概念說(shuō)課稿11-02
初中地理說(shuō)課稿模板《北京》說(shuō)課稿12-29
《離騷》說(shuō)課稿模板12-05
蘭亭集序說(shuō)課稿模板匯編九篇04-05
小學(xué)音樂(lè )說(shuō)課稿模板12-27
《過(guò)秦論》優(yōu)秀說(shuō)課稿模板12-28
《口語(yǔ)交際:勸告》優(yōu)秀說(shuō)課稿模板(精選6篇)12-28