成人免费看黄网站无遮挡,caowo999,se94se欧美综合色,a级精品九九九大片免费看,欧美首页,波多野结衣一二三级,日韩亚洲欧美综合

高中數學(xué)說(shuō)課稿

時(shí)間:2021-06-23 15:23:21 說(shuō)課稿 我要投稿

高中數學(xué)說(shuō)課稿模板6篇

  作為一名無(wú)私奉獻的老師,時(shí)常需要編寫(xiě)說(shuō)課稿,說(shuō)課稿有利于教學(xué)水平的提高,有助于教研活動(dòng)的開(kāi)展。那么說(shuō)課稿應該怎么寫(xiě)才合適呢?下面是小編整理的高中數學(xué)說(shuō)課稿6篇,僅供參考,大家一起來(lái)看看吧。

高中數學(xué)說(shuō)課稿模板6篇

高中數學(xué)說(shuō)課稿 篇1

  一、教學(xué)目標

  1.掌握任意角的正弦、余弦、正切函數的定義(包括定義域、正負符號判斷);了解任意角的余切、正割、余割函數的定義.

  2.經(jīng)歷從銳角三角函數定義過(guò)度到任意角三角函數定義的推廣過(guò)程,體驗三角函數概念的產(chǎn)生、發(fā)展過(guò)程.領(lǐng)悟直角坐標系的工具功能,豐富數形結合的經(jīng)驗.

  3.培養學(xué)生通過(guò)現象看本質(zhì)的唯物主義認識論觀(guān)點(diǎn),滲透事物相互聯(lián)系、相互轉化的辯證唯物主義世界觀(guān).

  4.培養學(xué)生求真務(wù)實(shí)、實(shí)事求是的科學(xué)態(tài)度.

  二、重點(diǎn)、難點(diǎn)、關(guān)鍵

  重點(diǎn):任意角的正弦、余弦、正切函數的定義、定義域、(正負)符號判斷法.

  難點(diǎn):把三角函數理解為以實(shí)數為自變量的函數.

  關(guān)鍵:如何想到建立直角坐標系;六個(gè)比值的確定性(α確定,比值也隨之確定)與依賴(lài)性(比值隨著(zhù)α的變化而變化).

  三、教學(xué)理念和方法

  教學(xué)中注意用新課程理念處理傳統教材,學(xué)生的數學(xué)學(xué)習活動(dòng)不僅要接受、記憶、模仿和練習,而且要自主探索、動(dòng)手實(shí)踐、合作交流、閱讀自學(xué),師生互動(dòng),教師發(fā)揮組織者、引導者、合作者的作用,引導學(xué)生主體參與、揭示本質(zhì)、經(jīng)歷過(guò)程.

  根據本節課內容、高一學(xué)生認知特點(diǎn)和我自己的教學(xué)風(fēng)格,本節課采用"啟發(fā)探索、講練結合"的方法組織教學(xué).

  四、教學(xué)過(guò)程

  [執教線(xiàn)索:

  回想再認:函數的概念、銳角三角函數定義(銳角三角形邊角關(guān)系)--問(wèn)題情境:能推廣到任意角嗎?--它山之石:建立直角坐標系(為何?)--優(yōu)化認知:用直角坐標系研究銳角三角函數--探索發(fā)展:對任意角研究六個(gè)比值(與角之間的關(guān)系:確定性、依賴(lài)性,滿(mǎn)足函數定義嗎?)--自主定義:任意角三角函數定義--登高望遠:三角函數的要素分析(對應法則、定義域、值域與正負符號判定)--例題與練習--回顧小結--布置作業(yè)]

 。ㄒ唬⿵土曇、回想再認

  開(kāi)門(mén)見(jiàn)山,面對全體學(xué)生提問(wèn):

  在初中我們初步學(xué)習了銳角三角函數,前幾節課,我們把銳角推廣到了任意角,學(xué)習了角度制和弧度制,這節課該研究什么呢?

  探索任意角的三角函數(板書(shū)課題),請同學(xué)們回想,再明確一下:

 。ㄇ榫1)什么叫函數?或者說(shuō)函數是怎樣定義的?

  讓學(xué)生回想后再點(diǎn)名回答,投影顯示規范的定義,教師根據回答情況進(jìn)行修正、強調:

  傳統定義:設在一個(gè)變化過(guò)程中有兩個(gè)變量x與y,如果對于x的每一個(gè)值,y都有唯一確定的值和它對應,那么就說(shuō)y是x的函數,x叫做自變量,自變量x的取值范圍叫做函數的定義域.

  現代定義:設A、B是非空的數集,如果按某個(gè)確定的對應關(guān)系f,使對于集合A中的任意一個(gè)數,在集合B中都有唯一確定的數f(x)和它對應,那么就稱(chēng)映射?:A→B為從集合A到集合B的一個(gè)函數,記作:y=f(x),x∈A,其中x叫自變量,自變量x的取值范圍A叫做函數的定義域.

  設計意圖:

  函數和三角函數是一般和特殊的關(guān)系,是共性和個(gè)性的關(guān)系,學(xué)生已經(jīng)學(xué)習了函數的概念,因此對三角函數的學(xué)習就是一個(gè)從一般到特殊的演繹的過(guò)程,也是以具體函數豐富函數概念的過(guò)程.教學(xué)經(jīng)驗表明:學(xué)生對函數兩種定義的記憶是有一定困難的,容易遺忘,此處讓學(xué)生對函數概念進(jìn)行回想再認,目的在于明確函數概念的本質(zhì),為演繹學(xué)習任意角三角函數概念作好知識和認知準備.

 。ㄇ榫2)我們在初中通過(guò)銳角三角形的邊角關(guān)系,學(xué)習了銳角的正弦、余弦、正切等三個(gè)三角函數.請回想:這三個(gè)三角函數分別是怎樣規定的?

  學(xué)生口述后再投影展示,教師再根據投影進(jìn)行強調:

  設計意圖:

  學(xué)生在初中學(xué)習了銳角的三角函數概念,現在學(xué)習任意角的三角函數,又是一種推廣和拓展的過(guò)程(類(lèi)似于從有理數到實(shí)數的擴展).溫故知新,要讓學(xué)生體會(huì )知識的產(chǎn)生、發(fā)展過(guò)程,就要從源頭上開(kāi)始,從學(xué)生現有認知狀況開(kāi)始,對銳角三角函數的復習就必不可少.

 。ǘ┮熹亯|、創(chuàng )設情景

 。ㄇ榫3)我們已經(jīng)把銳角推廣到了任意角,銳角的三角函數概念也能推廣到任意角嗎?試試看,可以獨立思考和探索,也可以互相討論!

  留時(shí)間讓學(xué)生獨立思考或自由討論,教師參與討論或巡回對學(xué)困生作啟發(fā)引導.

  能推廣嗎?怎樣推廣?針對剛才的問(wèn)題點(diǎn)名讓學(xué)生回答.用角的對邊、臨邊、斜邊比值的說(shuō)法顯然是受到阻礙了,由于4.1節已經(jīng)以直角坐標系為工具來(lái)研究任意角了,學(xué)生一般會(huì )想到(否則教師進(jìn)行提示)繼續用直角坐標系來(lái)研究任意角的三角函數.

  設計意圖:

  從學(xué)生現有知識水平和認知能力出發(fā),創(chuàng )設問(wèn)題情景,讓學(xué)生產(chǎn)生認知沖突,進(jìn)行必要的啟發(fā),將學(xué)生思維引上自主探索、合作交流的"再創(chuàng )造"征程.

  教師對學(xué)生回答情況進(jìn)行點(diǎn)評后布置任務(wù)情景:請同學(xué)們用直角坐標系重新研究銳角三角函數定義!

  師生共做(學(xué)生口述,教師板書(shū)圖形和比值):

  把銳角α安裝(如何安裝?角的頂點(diǎn)與原點(diǎn)重合,角的始邊與x軸非負半軸重合)在直角坐標系中,在角α終邊上任取一點(diǎn)P,作Pm⊥x軸于m,構造一個(gè)RtΔomP,則∠moP=α(銳角),設P(x,y)(x>0、y>0),α的臨邊om=x、對邊mP=y,斜邊長(cháng)|oP∣=r.

  根據銳角三角函數定義用x、y、r列出銳角α的正弦、余弦、正切三個(gè)比值,并補充對應列出三個(gè)倒數比值:

  設計意圖:

  此處做法簡(jiǎn)單,思想重要.為了順利實(shí)現推廣,可以構建中間橋梁或公共載體,使之既與初中的定義一致,又能自然地遷移到任意角的情形.由于前一節已經(jīng)以直角坐標系為工具來(lái)研究任意角了,學(xué)生自然能想到仍然以直角坐標系為工具來(lái)研究任意角的三角函數.初中以直角三角形邊角關(guān)系來(lái)定義銳角三角函數,現在要用坐標系來(lái)研究,探索的結論既要滿(mǎn)足任意角的情形,又要包容初中銳角三角函數定義.這是一個(gè)認識的飛躍,是理解任意角三角函數概念的關(guān)鍵之一,也是數學(xué)發(fā)現的重要思想和方法,屬于策略性知識,能夠形成遷移能力,為學(xué)生在以后學(xué)習中對某些知識進(jìn)行推廣拓展奠定了基礎(譬如從平面向量到空間向量的擴展,從實(shí)數到復數的擴展等).

 。ㄇ榫4)各個(gè)比值與角之間有怎樣的關(guān)系?比值是角的函數嗎?

  追問(wèn):銳角α大小發(fā)生變化時(shí),比值會(huì )改變嗎?

  先讓學(xué)生想象思考,作出主觀(guān)判斷,再用幾何畫(huà)板動(dòng)畫(huà)演示,同時(shí)作好解釋說(shuō)明:保持r不變,讓P繞原點(diǎn)o旋轉即α在銳角范圍內變化,六個(gè)比值隨之變化的直觀(guān)形象。結論是:比值隨α的變化而變化.

  引導學(xué)生觀(guān)察圖3,聯(lián)系相似三角形知識,

  探索發(fā)現:

  對于銳角α的每一個(gè)確定值,六個(gè)比值都是

  確定的,不會(huì )隨P在終邊上的移動(dòng)而變化.

  得出結論(強調):當α為銳角時(shí),六個(gè)比值隨α的變化而變化;但對于銳角α的每一個(gè)確定值,六個(gè)比值都是確定的,不會(huì )隨P在終邊上的移動(dòng)而變化.所以,六個(gè)比值分別是以角α為自變量、以比值為函數值的函數.

  設計意圖:

  初中學(xué)生對函數理解較膚淺,這里在學(xué)生思維的最近發(fā)展區進(jìn)一步研究初中學(xué)過(guò)的銳角三角函數,在思維上更上了一個(gè)層次,扣準函數概念的內涵,突出變量之間的依賴(lài)關(guān)系或對應關(guān)系,是從函數知識演繹到三角函數知識的主要依據,是準確理解三角函數概念的關(guān)鍵,也是在認知上把三角函數知識納入函數知識結構的關(guān)鍵.這樣做能夠使學(xué)生有效地增強函數觀(guān)念.

 。ㄈ┓治鰵w納、自主定義

 。ㄇ榫5)能將銳角的比值情形推廣到任意角α嗎?

  水到渠成,師生共同進(jìn)行探索和推廣:

  對于一個(gè)任意角α,它的終邊所在位置包括下列兩類(lèi)共八種情形(投影展示并作分析):

  終邊分別在四個(gè)象限的情形:終邊分別在四個(gè)半軸上的情形:

 ;

 。ㄖ赋觯翰划(huà)出角的方向,表明角具有任意性)

  怎樣刻畫(huà)任意角的三角函數呢?研究它的六個(gè)比值:

 。ò鍟(shū))設α是一個(gè)任意角,在α終邊上除原點(diǎn)外任意取一點(diǎn)P(x,y),P與原點(diǎn)o之間的距離記作r(r=>0),列出六個(gè)比值:

  α=kππ/2時(shí),x=0,比值y/x、r/x無(wú)意義;

  α=kπ時(shí),y=0,比值x/y、r/y無(wú)意義.

  追問(wèn):α大小發(fā)生變化時(shí),比值會(huì )改變嗎?

  先讓學(xué)生想象思考,作出主觀(guān)判斷,再用幾何畫(huà)板動(dòng)畫(huà)演示,同時(shí)作好解釋說(shuō)明:使r保持不變,P繞原點(diǎn)o逆時(shí)針、順時(shí)針旋轉即角α變化,六個(gè)比值隨之改變的直觀(guān)形象。結論是:各比值隨α的變化而變化.

  再引導學(xué)生利用相似三角形知識,探索發(fā)現:對于任意角α的每一個(gè)確定值,六個(gè)比值都是確定的,不會(huì )隨P在終邊上的移動(dòng)而變化.

  綜上得到(強調):當角α變化時(shí),六個(gè)比值隨之變化;對于確定的角α,六個(gè)比值(如果存在的話(huà))都不會(huì )隨P在角α終邊上的改變而改變,六個(gè)比值是確定的(對應的多值性即誘導公式一留到下節課分析).

  因此,六個(gè)比值分別是以角α為自變量、以比值為函數值的函數.

  根據歷史上的規定,對比值進(jìn)行命名,指出英文記法和讀法,記作(承前作復合板書(shū)):

  =sinα(正弦)=cosα(余弦)=tanα(正切)

  =cscα(余割)=sec(正弦)=cotα(余切)

  教師強調:sinα表示sin與α的乘積嗎?不是,sinα是函數記號,是一個(gè)整體,相當于函數記號f(x).其它幾個(gè)三角函數也如此

  投影顯示圖六,指導學(xué)生分析其對應關(guān)系,進(jìn)一步體會(huì )其函數內涵:

 。▓D六)

  指導學(xué)生識記六個(gè)比值及函數名稱(chēng).

  教師指出:正弦、余弦、正切、余切、正割、余割六個(gè)函數統稱(chēng)為三角函數,三角函數有非常豐富的知識和思想方法,我們以后主要學(xué)習正弦、余弦、正切三個(gè)函數的相關(guān)知識和方法,對于余切、正割、余割,只要同學(xué)們了解它們的定義就夠了(遵循大綱要求).

  引導學(xué)生進(jìn)一步分析理解:

  已知角的集合與實(shí)數集之間可以建立一一對應關(guān)系,對于每一個(gè)確定的實(shí)數,把它看成一個(gè)弧度數,就對應著(zhù)唯一的一個(gè)角,從而分別對應著(zhù)六個(gè)唯一的三角函數值.因此,(板書(shū))三角函數可以看成是以實(shí)數為自變量的函數,這將為以后的應用帶來(lái)很多方便.

  設計意圖:

  把角的終邊分別在四個(gè)象限、四條半軸上的情形全作出來(lái),有利于對任意性的全面把握.明確比值存在與否的條件,為確定函數定義域作準備.動(dòng)畫(huà)演示比值與角之間的依賴(lài)性與確定性關(guān)系,深化理解三角函數內涵.引導學(xué)生在理解的基礎上自主地對三角函數作出明確定義,是本節課的中心任務(wù).由于學(xué)生剛學(xué)弧度制,對弧度制的理解有待于在以后的學(xué)習應用中逐步感悟,因此部分學(xué)生對"三角函數可以看成是以實(shí)數為自變量的函數"的理解有半信半疑之感,有待通過(guò)后續的應用加深理解.

 。ㄋ模┨剿鞫x域

 。ㄇ榫6)(1)函數概念的三要素是什么?

  函數三要素:對應法則、定義域、值域.

  正弦函數sinα的對應法則是什么?

  正弦函數sinα的對應法則,實(shí)質(zhì)上就是sinα的定義:對α的每一個(gè)確定的值,有唯一確定的比值y/r與之對應,即α→y/r=sinα.

  (2)布置任務(wù)情景:什么是三角函數的定義域?請求出六個(gè)三角函數的定義域,填寫(xiě)下表:

  三角函數

  sinα

  cosα

  tanα

  cotα

  cscα

  secα

  定義域

  引導學(xué)生自主探索:

  如果沒(méi)有特別說(shuō)明,那么使解析式有意義的自變量的取值范圍叫做函數的定義域,三角函數的定義域自然是指:使比值有意義的角α的取值范圍.

  關(guān)于sinα=y/r、cosα=x/r,對于任意角α(弧度數),r>0,y/r、x/r恒有意義,定義域都是實(shí)數集R.

  對于tanα=y/x,α=kππ/2時(shí)x=0,y/x無(wú)意義,tanα的定義域是:{α|α∈R,且α≠kππ/2}..........

  教師指出:sinα、cosα、tanα的定義域必須緊扣三角函數定義在理解的基礎上記熟,cotα、cscα、secα的定義域不要求記憶.

 。P(guān)于值域,到后面再學(xué)習).

  設計意圖:

  定義域是函數三要素之一,研究函數必須明確定義域.指導學(xué)生根據定義自主探索確定三角函數定義域,有利于在理解的基礎上記住它、應用它,也增進(jìn)對三角函數概念的掌握.

 。ㄎ澹┓柵袛、形象識記

 。ㄇ榫7)能判斷三角函數值的正、負嗎?試試看!

  引導學(xué)生緊緊抓住三角函數定義來(lái)分析,r>0,三角函數值的符號決定于x、y值的正負,根據終邊所在位置總結出形象的識記口訣:

 。ㄍ玫谜、異號得負)

  sinα=y/r:上正下負橫為0cosα=x/r:左負右正縱為0tanα=y/x:交叉正負

  設計意圖:

  判斷三角函數值的正負符號,是本章教材的一項重要的知識、技能要求.要引導學(xué)生抓住定義、數形結合判斷和記憶三角函數值的正負符號,并總結出形象的識記口訣,這也是理解和記憶的關(guān)鍵.

 。┚毩曥柟、理解記憶

  1、自學(xué)例1:已知角α的終邊經(jīng)過(guò)點(diǎn)P(2,-3),求α的六個(gè)三角函數值.

  要求:讀完題目,思考:計算什么?需要準備什么?閉目心算,對照解答,模仿書(shū)面表達格式,鞏固定義.

  課堂練習:

  p19題1:已知角α的終邊經(jīng)過(guò)點(diǎn)P(-3,-1),求α的六個(gè)三角函數值.

  要求心算,并提問(wèn)中下學(xué)生檢驗,--------

  點(diǎn)評:角α終邊上有無(wú)窮多個(gè)點(diǎn),根據三角函數的定義,只要知道α終邊上任意一個(gè)點(diǎn)的坐標,就可以計算這個(gè)角的三角函數值(或判斷其無(wú)意義).

  補充例題:已知角α的終邊經(jīng)過(guò)點(diǎn)P(x,-3),cosα=4/5,求α的其它五個(gè)三角函數值.

  師生探索:已知y=-3,要求其它五個(gè)三角函數值,須知r=?,x=?.根據定義得=(方程思想),x>0,解得x=4,從而--------.解答略.

  2、自學(xué)例2:求下列各角的六個(gè)三角函數值:(1)0;(2)π/2;(3)3π/2.

  提問(wèn),據反饋信息作點(diǎn)評、修正.

  師生探索:緊扣三角函數定義求解,首先要在終邊上取定一點(diǎn)。終邊在哪兒呢?取定哪一點(diǎn)呢?任意點(diǎn)、還是特殊點(diǎn)?要靈活,只要能夠算出三角函數值,都可以。

  取特殊點(diǎn)能使計算更簡(jiǎn)明。課堂練習:p19題2.(改編)填表:

  角α(角度)

  0°

  90°

  180°

  270°

  360°

  角α(弧度)

  sinα

  cosα

  tanα

  處理:要求取點(diǎn)用定義求解,針對計算過(guò)程提問(wèn)、點(diǎn)評,理解鞏固定義.

  強調:終邊在坐標軸上的角叫軸線(xiàn)角,如0、π/2、π、3π/2等,今后經(jīng)常用到軸線(xiàn)角的三角函數值,要結合三角函數定義記熟這些值.

  設計意圖:

  及時(shí)安排自學(xué)例題、自做教材練習題,一般性與特殊性相結合,進(jìn)行適量的變式練習,以鞏固和加深對三角函數概念的理解,通過(guò)課堂積極主動(dòng)的練習活動(dòng)進(jìn)行思維訓練,把"培養學(xué)生分析解決問(wèn)題的能力"貫穿在每一節課的課堂教學(xué)始終.

 。ㄆ撸┗仡櫺〗Y、建構網(wǎng)絡(luò )

  要求全體學(xué)生根據教師所提問(wèn)題進(jìn)行總結識記,提問(wèn)檢查并強調:

  1.你是怎樣把銳角三角函數定義推廣到任意角的?或者說(shuō)任意角三角函數具體是怎樣定義的?(建立直角坐標系,使角的頂點(diǎn)與坐標原點(diǎn)重合,---,在終邊上任意取定一點(diǎn)P,---)

  2.你如何判斷和記憶正弦、余弦、正切函數的定義域?(根據定義,------)

  3.你如何記憶正弦、余弦、正切函數值的符號?(根據定義,想象坐標位置,-----)

  設計意圖:

  遺忘的規律是先快后慢,回顧再現是記憶的重要途徑,在課堂內及時(shí)總結識記主要內容是上策.此處以問(wèn)題形式讓學(xué)生自己歸納識記本節課的主體內容,抓住要害,人人參與,及時(shí)建構知識網(wǎng)絡(luò ),優(yōu)化知識結構,培養認知能力.

 。ò耍┎贾谜n外作業(yè)

  1.書(shū)面作業(yè):習題4.3第3、4、5題.

  2.認真閱讀p22"閱讀材料:三角函數與歐拉",了解歐拉的生平和貢獻,特別學(xué)習他對科學(xué)的摯著(zhù)精神和堅忍不拔的頑強毅力!有興趣的同學(xué)可以上網(wǎng)查閱歐拉的相關(guān)情況.

  教學(xué)設計說(shuō)明

  一、對本節教材的理解

  三角函數是描述周期運動(dòng)現象的重要的數學(xué)模型,有非常廣泛的應用.

  星星之火,可以燎原.

  直角三角形簡(jiǎn)單樸素的邊角關(guān)系,以直角坐標系為工具進(jìn)行自然地推廣而得到簡(jiǎn)明的任意角的三角函數定義,緊緊扣住三角函數定義這個(gè)寶貴的源泉,自然地導出三角函數線(xiàn)、定義域、符號判斷、值域、同角三角函數關(guān)系、多組誘導公式、多組變換公式、輔助角公式、圖象和性質(zhì),本章教材就是這些內容的具體安排.定義直接用于解析幾何(如直線(xiàn)斜率公式、極坐標、部分曲線(xiàn)的參數方程等),定義還是直接解決某些問(wèn)題的工具,三角函數知識是物理學(xué)、高等數學(xué)、測量學(xué)、天文學(xué)的重要基礎.

  三角函數定義必然是學(xué)好全章內容的關(guān)鍵,如果學(xué)生掌握不好,將直接影響到后續內容的學(xué)習,由三角函數定義的基礎性和應用的廣泛性決定了本節教材的重點(diǎn)就是定義本身.

  二、教學(xué)法加工

  數學(xué)教材通常用抽象概括的形式化的數學(xué)書(shū)面語(yǔ)言闡述其知識和方法,教師只有通過(guò)教學(xué)法加工,始終貫徹"以學(xué)生的發(fā)展為本"的科學(xué)教育觀(guān),"將數學(xué)的學(xué)術(shù)形態(tài)轉化為教育形態(tài)"(張奠宙語(yǔ)),引導學(xué)生積極主動(dòng)地進(jìn)行思考活動(dòng),直接參與體驗數學(xué)知識產(chǎn)生發(fā)展的背景、過(guò)程,返璞歸真,揭示本質(zhì),體會(huì )其中的思想和方法,學(xué)生只有這樣才能真正理解掌握數學(xué)知識和方法,有效地發(fā)展智力、培養能力.

  在本節教材中,三角函數定義是重點(diǎn),三角函數線(xiàn)是難點(diǎn),為了較好地突出重點(diǎn)和突破難點(diǎn),分散重點(diǎn)和難點(diǎn),同時(shí)兼顧例題、課堂練習的協(xié)調匹配,將不按教材順序來(lái)進(jìn)行教學(xué),第一課時(shí)安排三角函數的定義(突出重點(diǎn))、定義域、符號判斷、例題1、2及p19課堂練習1、2、3,第二課時(shí)安排三角函數線(xiàn)、p15練習(突破難點(diǎn))、誘導公式一及課本例題3、4和其它練習.本課例屬第一課時(shí).

  教學(xué)經(jīng)驗表明,三角函數定義"簡(jiǎn)單易記",學(xué)生很容易輕視它,不少學(xué)生機械記憶、一知半解.本課例堅持"教師主導、學(xué)生主體"的原則,采用"啟發(fā)探索、講練結合"的常規教學(xué)方法,在學(xué)生的最近發(fā)展區圍繞學(xué)生的學(xué)習目標設計了一系列符合學(xué)生認知規律的程序,通過(guò)多媒體輔助教學(xué)動(dòng)畫(huà)演示比值與角之間的依賴(lài)關(guān)系,拓展思維活動(dòng)時(shí)空,力求使學(xué)生全員主動(dòng)參與,積極思考,體會(huì )定義產(chǎn)生、發(fā)展的過(guò)程,通過(guò)思維過(guò)程來(lái)理解知識、培養能力.

  將六個(gè)比值放在一起來(lái)研究,同時(shí)給出六個(gè)三角函數的定義,能夠增強對比感和整體感,至于大綱對兩組函數掌握與了解的不同要求,在下一步的教學(xué)中注意區分就行了.

  教學(xué)中關(guān)于符號sinα、cosα、tanα的出場(chǎng)安排,教材首先對比值取名并給出英文記法,再研究它們與α的函數關(guān)系;另外可以先研究六個(gè)比值與α之間的函數關(guān)系,然后再對六個(gè)比值取名給出記法.后者更能突出函數內涵,揭示三角函數本質(zhì).本課例采用后者組織教學(xué).

  三、教學(xué)過(guò)程分析(見(jiàn)穿插在教案中的設計意圖).

高中數學(xué)說(shuō)課稿 篇2

  一、教材分析

  1、教材的地位和作用:

  函數是高中數學(xué)學(xué)習的重點(diǎn)和難點(diǎn),函數的思想貫穿于整個(gè)高中數學(xué)之中。本節課是學(xué)生在已掌握了函數的一般性質(zhì)和簡(jiǎn)單的指數運算的基礎上,進(jìn)一步研究指數函數及指數函數的圖像和性質(zhì),同時(shí)也為今后研究對數函數及其性質(zhì)打下堅實(shí)的基礎。因此本節課內容十分重要,它對知識起著(zhù)承上啟下的作用。

  2、教學(xué)的重點(diǎn)和難點(diǎn):

  根據這節課的內容特點(diǎn)及學(xué)生的實(shí)際情況,我將本節課教學(xué)重點(diǎn)定為指數函數的圖像、性質(zhì)及應用,難點(diǎn)定為指數函數性質(zhì)的發(fā)現過(guò)程及指數函數與底的關(guān)系。

  二、教學(xué)目標分析

  基于對教材的理解和分析,我制定了以下教學(xué)目標:

  1、理解指數函數的定義,掌握指數函數圖像、性質(zhì)及其簡(jiǎn)單應用。

  2、通過(guò)教學(xué)培養學(xué)生觀(guān)察、分析、歸納等思維能力,體會(huì )數形結合思想和分類(lèi)討論思想,增強學(xué)生識圖用圖的能力。

  3、培養學(xué)生對知識的嚴謹科學(xué)態(tài)度和辯證唯物主義觀(guān)點(diǎn)。

  三、教法學(xué)法分析

  1、學(xué)情分析

  教學(xué)對象是剛進(jìn)入高中的學(xué)生,雖然具有一定的分析問(wèn)題和解決問(wèn)題的能力,邏輯思維能力也逐步形成,但由于年齡的原因,思維盡管活躍敏捷,卻缺乏冷靜深刻。因此思考問(wèn)題片面不嚴謹。

  2、教法分析:基于以上學(xué)情分析,我采用先學(xué)生討論,再教師講授教學(xué)方法。一方面培養學(xué)生的觀(guān)察、分析、歸納等思維能力。另一方面用教師的講授來(lái)糾正由于學(xué)生思維過(guò)分活躍而走入的誤區,和彌補知識的不足,達到能力與知識的雙重效果。

  3、學(xué)法分析

  讓學(xué)生仔細觀(guān)察書(shū)中給出的實(shí)際例子,使他們發(fā)現指數函數與現實(shí)生活息息相關(guān)。再根據高一學(xué)生愛(ài)動(dòng)腦懶動(dòng)手的特點(diǎn),讓學(xué)生自己描點(diǎn)畫(huà)圖,畫(huà)出指數函數的圖像,繼而用自己的語(yǔ)言總結指數函數的性質(zhì),學(xué)生經(jīng)歷了探究的過(guò)程,培養探究能力和抽象概括的能力。

  四、教學(xué)過(guò)程

  (一)創(chuàng )設情景

  問(wèn)題1:某種細胞分裂時(shí),由1個(gè)分裂成2個(gè),2個(gè)分裂成4個(gè),……一個(gè)這樣的細胞分裂 次后,得到的細胞分裂的個(gè)數 與 之間,構成一個(gè)函數關(guān)系,能寫(xiě)出 與 之間的函數關(guān)系式嗎?

  學(xué)生回答: 與 之間的關(guān)系式,可以表示為 。

  問(wèn)題2:折紙問(wèn)題:讓學(xué)生動(dòng)手折紙

  學(xué)生回答:①對折的次數 與所得的層數 之間的關(guān)系,得出結論

 、趯φ鄣拇螖 與折后面積 之間的關(guān)系(記折前紙張面積為1),得出結論

  問(wèn)題3:《莊子。天下篇》中寫(xiě)到“一尺之棰,日取其半,萬(wàn)世不竭”。

  學(xué)生回答:寫(xiě)出取 次后,木棰的剩留量與 與 的函數關(guān)系式。

  設計意圖:

  (1)讓學(xué)生在問(wèn)題的情景中發(fā)現問(wèn)題,遇到挑戰,激發(fā)斗志,又引導學(xué)生在簡(jiǎn)單的具體問(wèn)題中抽象出共性,體驗從簡(jiǎn)單到復雜,從特殊到一般的認知規律。從而引入兩種常見(jiàn)的指數函數① ②

  (2)讓學(xué)生感受我們生活中存在這樣的指數函數模型,便于學(xué)生接

  受指數函數的形式。

  (二)導入新課

  引導學(xué)生觀(guān)察,三個(gè)函數中,底數是常數,指數是自變量。

  設計意圖:充實(shí)實(shí)例,突出底數a的取值范圍,讓學(xué)生體會(huì )到數學(xué)來(lái)源于生產(chǎn)生活實(shí)際。函數 分別以 的數為底,加深對定義的感性認識,為順利引出指數函數定義作鋪墊。

  (三)新課講授

  1.指數函數的定義

  一般地,函數 叫做指數函數,其中 是自變量,函數的定義域是R。

  含義:

  設計意圖:為 按兩種情況得出指數函數性質(zhì)作鋪墊。若學(xué)生回答不合適,引導學(xué)生用區間表示:

  問(wèn)題:指數函數定義中,為什么規定“ ”如果不這樣規定會(huì )出現什么情況?

  設計意圖:教師首先提出問(wèn)題:為什么要規定底數大于0且不等于1呢?這是本節的一個(gè)難點(diǎn),為突破難點(diǎn),采取學(xué)生自由討論的形式,達到互相啟發(fā),補充,活躍氣氛,激發(fā)興趣的目的。

  對于底數的分類(lèi),可將問(wèn)題分解為:

  (1)若 會(huì )有什么問(wèn)題?(如 ,則在實(shí)數范圍內相應的函數值不存在)

  (2)若 會(huì )有什么問(wèn)題?(對于 , 都無(wú)意義)

  (3)若 又會(huì )怎么樣?( 無(wú)論 取何值,它總是1,對它沒(méi)有研究的必要.)

  師:為了避免上述各種情況的發(fā)生,所以規定 。

  在這里要注意生生之間、師生之間的對話(huà)。

  設計意圖:認識清楚底數a的特殊規定,才能深刻理解指數函數的定義域是R;并為學(xué)習對數函數,認識指數與對數函數關(guān)系打基礎。

  教師還要提醒學(xué)生指數函數的定義是形式定義,必須在形式上一模一樣才行,然后把問(wèn)題引向深入。

  1:指出下列函數那些是指數函數:

  2:若函數 是指數函數,則

  3:已知 是指數函數,且 ,求函數 的解析式。

  設計意圖 :加深學(xué)生對指數函數定義和呈現形式的理解。

  2.指數函數的圖像及性質(zhì)

  在同一平面直角坐標系內畫(huà)出下列指數函數的圖象

  畫(huà)函數圖象的步驟:列表、描點(diǎn)、連線(xiàn)

  思考如何列表取值?

  教師與學(xué)生共同作出 圖像。

  設計意圖:在理解指數函數定義的基礎上掌握指數函數的圖像與性質(zhì),是本節的重點(diǎn)。關(guān)鍵在于弄清底數a對于函數值變化的影響。對于 時(shí)函數值變化的不同情況,學(xué)生往往容易混淆,這是教學(xué)中的一個(gè)難點(diǎn)。為此,必須利用圖像,數形結合。教師親自板演,學(xué)生親自在課前準備好的坐標系里畫(huà)圖,而不是采用幾何畫(huà)板直接得到圖像,目的是使學(xué)生更加信服,加深印象,并為以后畫(huà)圖解題,采用數形結合思想方法打下基礎。

  利用幾何畫(huà)板演示函數 的圖象,觀(guān)察分析圖像的共同特征。由特殊到一般,得出指數函數 的圖象特征,進(jìn)一步得出圖象性質(zhì):

  教師組織學(xué)生結合圖像討論指數函數的性質(zhì)。

  設計意圖:這是本節課的重點(diǎn)和難點(diǎn),要充分調動(dòng)學(xué)生的積極性、主動(dòng)性,發(fā)揮他們的潛能,盡量由學(xué)生自主得出性質(zhì),以便能夠更深刻的記憶、更熟練的運用。

  師生共同總結指數函數的性質(zhì),教師邊總結邊板書(shū)。

  特別地,函數值的分布情況如下:

  設計意圖:再次強調指數函數的單調性與底數a的關(guān)系,并具體分析了函數值的分布情況,深刻理解指數函數值域情況。

  (四)鞏固與練習

  例1: 比較下列各題中兩值的大小

  教師引導學(xué)生觀(guān)察這些指數值的特征,思考比較大小的方法。

  (1)(2)兩題底相同,指數不同,(3)(4)兩題可化為同底的,可以利用函數的單調性比較大小。

  (5)題底不同,指數相同,可以利用函數的圖像比較大小。

  (6)題底不同,指數也不同,可以借助中介值比較大小。

  例2:已知下列不等式 , 比較 的大小 :

  設計意圖:這是指數函數性質(zhì)的簡(jiǎn)單應用,使學(xué)生在解題過(guò)程中加深對指數函數的圖像及性質(zhì)的理解和記憶。

  (五)課堂小結

  通過(guò)本節課的學(xué)習,你學(xué)到了哪些知識?

  你又掌握了哪些數學(xué)思想方法?

  你能將指數函數的學(xué)習與實(shí)際生活聯(lián)系起來(lái)嗎?

  設計意圖:讓學(xué)生在小結中明確本節課的學(xué)習內容,強化本節課的學(xué)習重點(diǎn),并為后續學(xué)習打下基礎。

  (六)布置作業(yè)

  1、練習B組第2題;習題3-1A組第3題

  2、A先生從今天開(kāi)始每天給你10萬(wàn)元,而你承擔如下任務(wù):第一天給A先生1元,第二天給A先生2元,,第三天給A先生4元,第四天給A先生8元,依次下去,…,A先生要和你簽定15天的合同,你同意嗎?又A先生要和你簽定30天的合同,你能簽這個(gè)合同嗎?

  3、觀(guān)察指數函數 的圖象,比較 的大小。

高中數學(xué)說(shuō)課稿 篇3

  說(shuō)課目標

  (1)知識目標:掌握拋物線(xiàn)的定義,掌握拋物線(xiàn)的四種標準方程形式,及其對應的焦點(diǎn)、準線(xiàn)。

  (2)能力目標:通過(guò)對拋物線(xiàn)概念和標準方程的學(xué)習,培養學(xué)生分析和概括的能力,提高建立坐標系的能力,由圓錐曲線(xiàn)的統一定義,形成學(xué)生對事物運動(dòng)變化、對立、統一的辨證唯物主義觀(guān)點(diǎn)。

  (3)德育目標:通過(guò)拋物線(xiàn)概念和標準方程的學(xué)習,培養學(xué)生勇于探索、嚴密細致的科學(xué)態(tài)度,通過(guò)提問(wèn)、討論、思考等教學(xué)活動(dòng),調動(dòng)學(xué)生積極參與教學(xué),培養良好的學(xué)習習慣。

  教學(xué)重點(diǎn):(1)拋物線(xiàn)的定義及焦點(diǎn)、準線(xiàn);

  (2)利用坐標法求出拋物線(xiàn)的四種標準方程;

  (3)會(huì )根據拋物線(xiàn)的焦點(diǎn)坐標,準線(xiàn)方程求拋物線(xiàn)的標準方程。

  教學(xué)難點(diǎn):(1)拋物線(xiàn)的四種圖形及標準方程的區分;

  (2)拋物線(xiàn)定義及焦點(diǎn)、準線(xiàn)等知識的靈活運用。

  說(shuō)課方法:啟發(fā)引導法(通過(guò)橢圓與雙曲線(xiàn)第二定義引出拋物線(xiàn))。

  依據建構主義教學(xué)原理,通過(guò)類(lèi)比、歸納把新知識化歸到原有的認知結構中去(二次函數與拋物線(xiàn)方程的對比,移圖與建立適當建立坐標系的方法的歸納)。

  利用多媒體教學(xué)

  說(shuō)課過(guò)程:

  一、課題引入

  利用學(xué)生已有知識提問(wèn)學(xué)生:1、橢圓的第二種定義:到定點(diǎn)與到定直線(xiàn)的距離的比是小于1的常數的點(diǎn)的軌跡是橢圓。(用課件演示)

  2、雙曲線(xiàn)的第二種定義:到定點(diǎn)與到定直線(xiàn)的距離的比是大于1的常數的點(diǎn)的軌跡是雙曲線(xiàn)。(用課件演示)

  由此引出:到定點(diǎn)的距離和到定直線(xiàn)的距離的比是等于1的常數的點(diǎn)的軌跡

  是什么?

  (以問(wèn)題為出發(fā)點(diǎn),創(chuàng )設情景,提高學(xué)生求知欲)

  教師用直尺、三角板和細繩演示,學(xué)生觀(guān)察所得曲線(xiàn)。

  從而引出本節課的學(xué)習內容。

  二、講授新課

  1.對拋物線(xiàn)的初步認識

  物理中拋物線(xiàn)的運動(dòng)軌跡;數學(xué)中二次函數的圖象;生活中拋物線(xiàn)的實(shí)例(圖片顯示)等。

  2.拋物線(xiàn)的定義

  3.拋物線(xiàn)標準方程的推導:①學(xué)生回顧求曲線(xiàn)方程的步驟(建系、設點(diǎn)、列方程);

 、谌艚裹c(diǎn)F和準線(xiàn)的距離為()這樣建立坐標系?由學(xué)生思考:可能出現的結果:

  四、課堂小結

  1、本節課的內容:拋物線(xiàn)的定義,焦點(diǎn)、準線(xiàn)的意義及四種標準方程;

  2、理解參數的幾何意義(焦準距)

  3、利用坐標法求曲線(xiàn)方程是坐標系的適當選取。

  課后作業(yè):119頁(yè)習題8.52,4

  設計說(shuō)明:學(xué)生在初中學(xué)習二次函數時(shí)知道二次函數的圖象是一個(gè)拋物線(xiàn),在物理的學(xué)習中也接觸過(guò)拋物線(xiàn)(物體的運動(dòng)軌跡)。因而對拋物線(xiàn)的認識比對前面學(xué)習的兩種圓錐曲線(xiàn)橢圓和雙曲線(xiàn)更多。所以學(xué)生學(xué)起來(lái)會(huì )輕松。但是要注意的是,現在所學(xué)的拋物線(xiàn)是方程的曲線(xiàn)而不是函數的圖象。本節內容是在學(xué)習了橢圓和雙曲線(xiàn)的基礎上,利用圓錐曲線(xiàn)的第二定義統一進(jìn)行展開(kāi)的,因而對于拋物線(xiàn)的系統學(xué)習具有雙重的目標性。

  拋物線(xiàn)作為點(diǎn)的軌跡,其標準方程的推導過(guò)程充滿(mǎn)了辨證法,處處是數與形之間的對照和相互轉化。而要得到拋物線(xiàn)的標準方程,必須建立適當的坐標系,還要依賴(lài)焦點(diǎn)和準線(xiàn)的相互位置關(guān)系,這是拋物線(xiàn)標準方程有四種而不象橢圓和雙曲線(xiàn)只有兩種形式。因而拋物線(xiàn)的標準方程的推導也是培養辨證唯物主義觀(guān)點(diǎn)的好素材。

  利用圓錐曲線(xiàn)第二定義通過(guò)類(lèi)比方法,引導學(xué)生觀(guān)察和對比,啟發(fā)學(xué)生猜想與概括,利用建立坐標系求出拋物線(xiàn)的四種標準方程,讓每一個(gè)學(xué)生都能動(dòng)手,動(dòng)口,動(dòng)腦參與教學(xué)過(guò)程,真正貫徹“教師為主導,學(xué)生為主體”的教學(xué)思想。對于標準方程中的參數及其幾何意義,焦點(diǎn)坐標和準線(xiàn)方程與的關(guān)系是本節課的重點(diǎn)內容,必須讓學(xué)生掌握如何根據標準方程求、焦點(diǎn)坐標、準線(xiàn)方程或根據后三者求拋物線(xiàn)的標準方程。特別對于一些有關(guān)距離的問(wèn)題,要能靈活運用拋物線(xiàn)的定義給予解決。

  當前素質(zhì)教育的主流是培養學(xué)生的能力,讓學(xué)生學(xué)會(huì )學(xué)習。本節課采用學(xué)生通過(guò)探索、觀(guān)察、對比分析,自己發(fā)現結論的學(xué)習方法,培養了學(xué)生邏輯思維能力,動(dòng)手實(shí)踐能力以及探索的精神。

高中數學(xué)說(shuō)課稿 篇4

  各位老師你們好!今天我要為大家講的課題是

  首先,我對本節教材進(jìn)行一些分析:

  一、教材分析(說(shuō)教材):

  1. 教材所處的地位和作用:

  本節內容在全書(shū)和章節中的作用是:《 》是 中數學(xué)教材第 冊第 章第 節內容。在此之前學(xué)生已學(xué)習了 基礎,這為過(guò)渡到本節的學(xué)習起著(zhù)鋪墊作用。本節內容是在 中,占據 的地位。以及為其他學(xué)科和今后的學(xué)習打下基礎。

  2. 教育教學(xué)目標:

  根據上述教材分析,考慮到學(xué)生已有的認知結構心理特征,制定如下教學(xué)目標:

 。1)知識目標: (2)能力目標:通過(guò)教學(xué)初步培養學(xué)生分析問(wèn)題,解決實(shí)際問(wèn)題,讀圖分析,收集處理信息,團結協(xié)作,語(yǔ)言表達能力以及通過(guò)師生雙邊活動(dòng),初步培養學(xué)生運用知識的能力,培養學(xué)生加強理論聯(lián)系實(shí)際的能力,(3)情感目標:通過(guò) 的教學(xué)引導學(xué)生從現實(shí)的生活經(jīng)歷與體驗出發(fā),激發(fā)學(xué)生學(xué)習興趣。

  3. 重點(diǎn),難點(diǎn)以及確定依據:

  本著(zhù)課程標準,在吃透教材基礎上,我確立了如下的教學(xué)重點(diǎn)、難點(diǎn)

  重點(diǎn): 通過(guò) 突出重點(diǎn)

  難點(diǎn): 通過(guò) 突破難點(diǎn)

  關(guān)鍵:

  下面,為了講清重難上點(diǎn),使學(xué)生能達到本節課設定的目標,再從教法和學(xué)法上談?wù)劊?/p>

  二、教學(xué)策略(說(shuō)教法)

  1. 教學(xué)手段:

  如何突出重點(diǎn),突破難點(diǎn),從而實(shí)現教學(xué)目標。在教學(xué)過(guò)程中擬計劃進(jìn)行如下操作:教學(xué)方法;诒竟澱n的特點(diǎn): 應著(zhù)重采用 的教學(xué)方法。

  2. 教學(xué)方法及其理論依據:堅持“以學(xué)生為主體,以教師為主導”的原則,根據學(xué)生的心理發(fā)展規律,采用學(xué)生參與程度高的學(xué)導式討論教學(xué)法。在學(xué)生看書(shū),討論的基礎上,在老師啟發(fā)引導下,運用問(wèn)題解決式教法,師生交談法,圖像信號法,問(wèn)答式,課堂討論法。在采用問(wèn)答法時(shí),特別注重不同難度的問(wèn)題,提問(wèn)不同層次的學(xué)生,面向全體,使基礎差的.學(xué)生也能有表現機會(huì ),培養其自信心,激發(fā)其學(xué)習熱情。有效的開(kāi)發(fā)各層次學(xué)生的潛在智能,力求使學(xué)生能在原有的基礎上得到發(fā)展。同時(shí)通過(guò)課堂練習和課后作業(yè),啟發(fā)學(xué)生從書(shū)本知識回到社會(huì )實(shí)踐。提供給學(xué)生與其生活和周?chē)澜缑芮邢嚓P(guān)的數學(xué)知識,學(xué)習基礎性的知識和技能,在教學(xué)中積極培養學(xué)生學(xué)習興趣和動(dòng)機,明確的學(xué)習目的,老師應在課堂上充分調動(dòng)學(xué)生的學(xué)習積極性,激發(fā)來(lái)自學(xué)生主體的最有力的動(dòng)力。

  3. 學(xué)情分析:(說(shuō)學(xué)法)

  我們常說(shuō):“現代的文盲不是不識字的人,而是沒(méi)有掌握學(xué)習方法的人”,因而在教學(xué)中要特別重視學(xué)法的指導。

 。1) 學(xué)生特點(diǎn)分析:中學(xué)生心理學(xué)研究指出,高中階段是(查同中學(xué)生心發(fā)展情況)抓住學(xué)

  生特點(diǎn),積極采用形象生動(dòng),形式多樣的教學(xué)方法和學(xué)生廣泛的積極主動(dòng)參與的學(xué)習方式,定能激發(fā)學(xué)生興趣,有效地培養學(xué)生能力,促進(jìn)學(xué)生個(gè)性發(fā)展。生理上表少年好動(dòng),注意力易分散

 。2) 知識障礙上:知識掌握上,學(xué)生原有的知識 ,許多學(xué)生出現知識遺忘,所以應全面系統的去講述;學(xué)生學(xué)習本節課的知識障礙, 知識 學(xué)生不易理解,所以教學(xué)中老師應予以簡(jiǎn)單明白,深入淺出的分析。

 。3) 動(dòng)機和興趣上:明確的學(xué)習目的,老師應在課堂上充分調動(dòng)學(xué)生的學(xué)習積極性,激發(fā)來(lái)自學(xué)生主體的最有力的動(dòng)力

  最后我來(lái)具體談?wù)勥@一堂課的教學(xué)過(guò)程:

  4. 教學(xué)程序及設想:

 。1)由 引入:把教學(xué)內容轉化為具有潛在意義的問(wèn)題,讓學(xué)生產(chǎn)生強烈的問(wèn)題意識,使學(xué)生的整個(gè)學(xué)習過(guò)程成為“猜想”繼而緊張的沉思,期待錄找理由和證明過(guò)程。在實(shí)際情況下學(xué)習可以使學(xué)生利用已有的知識與經(jīng)驗,同化和索引出當肖學(xué)習的新知識,這樣獲取知識,不但易于保持,而且易于遷移到陌生的問(wèn)題情境中。

 。2)由實(shí)例得出本課新的知識點(diǎn)

 。3)講解例題。在講例題時(shí),不僅在于怎樣解,更在于為什么這樣解,而及時(shí)對解題方法和規律進(jìn)行概括,有利于學(xué)生的思維能力。

 。4)能力訓練。課后練習使學(xué)生能鞏固羨慕自覺(jué)運用所學(xué)知識與解題思想方法。

 。5)總結結論,強化認識。知識性的內容小結,可把課堂教學(xué)傳授的知識盡快化為學(xué)生的素質(zhì),數學(xué)思想方法的小結,可使學(xué)生更深刻地理解數學(xué)思想方法在解題中的地位和應用,并且逐步培養學(xué)生良好的個(gè)性品質(zhì)目標。

 。6)變式延伸,進(jìn)行重構,重視課本例題,適當對題目進(jìn)行引申,使例題的作用更加突出,有利于學(xué)生對知識的串聯(lián),累積,加工,從而達到舉一反三的效果。

 。7)板書(shū)

 。8)布置作業(yè)。 針對學(xué)生素質(zhì)的差異進(jìn)行分層訓練,既使學(xué)生掌握基礎知識,又使學(xué)有余力的學(xué)生有所提高,

  教學(xué)程序:

  課堂結構:復習提問(wèn),導入講授課,課堂練習,鞏固新課,布置作業(yè)等五部分

高中數學(xué)說(shuō)課稿 篇5

  說(shuō)教材:

  1、地位、作用和特點(diǎn):

  《 》是高中數學(xué)課本第 冊( 修)的第 章“ ”的第 節內容,高中數學(xué)課本說(shuō)課稿。

  本節是在學(xué)習了 之后編排的。通過(guò)本節課的學(xué)習,既可以對 的知識進(jìn)一步鞏固和深化,又可以為后面學(xué)習 打下基礎,所以是本章的重要內容。此外,《 》的知識與我們日常生活、生產(chǎn)、科學(xué)研究 有著(zhù)密切的聯(lián)系,因此學(xué)習這部分有著(zhù)廣泛的現實(shí)意義。

  教學(xué)目標:

  根據《教學(xué)大綱》的要求和學(xué)生已有的知識基礎和認知能力,確定以下教學(xué)目標:

 。1)知識目標:A、B、C

 。2)能力目標:A、B、C

 。3)德育目標:A、B

  教學(xué)的重點(diǎn)和難點(diǎn):

 。1)教學(xué)重點(diǎn):

 。2)教學(xué)難點(diǎn):

  二、說(shuō)教法:

  基于上面的教材分析,我根據自己對研究性學(xué)習“啟發(fā)式”教學(xué)模式和新課程改革的理論認識,結合本校學(xué)生實(shí)際,主要突出了幾個(gè)方面:一是創(chuàng )設問(wèn)題情景,充分調動(dòng)學(xué)生求知欲,并以此來(lái)激發(fā)學(xué)生的探究心理。二是運用啟發(fā)式教學(xué)方法,就是把教和學(xué)的各種方法綜合起來(lái)統一組織運用于教學(xué)過(guò)程,以求獲得最佳效果。另外還注意獲得和交換信息渠道的綜合、教學(xué)手段的綜合和課堂內外的綜合。并且在整個(gè)教學(xué)設計盡量做到注意學(xué)生的心理特點(diǎn)和認知規律,觸發(fā)學(xué)生的思維,使教學(xué)過(guò)程真正成為學(xué)生的學(xué)習過(guò)程,以思維教學(xué)代替單純的記憶教學(xué)。三是注重滲透數學(xué)思考方法(聯(lián)想法、類(lèi)比法、數形結合等一般科學(xué)方法)。讓學(xué)生在探索學(xué)習知識的過(guò)程中,領(lǐng)會(huì )常見(jiàn)數學(xué)思想方法,培養學(xué)生的探索能力和創(chuàng )造性素質(zhì)。四是注意在探究問(wèn)題時(shí)留給學(xué)生充分的時(shí)間,以利于開(kāi)放學(xué)生的思維。當然這就應在處理教學(xué)內容時(shí)能夠做到葉老師所說(shuō)“教就是為了不教”。因此,擬對本節課設計如下教學(xué)程序:

  導入新課 新課教學(xué)

  反饋發(fā)展

  三、說(shuō)學(xué)法:

  學(xué)生學(xué)習的過(guò)程實(shí)際上就是學(xué)生主動(dòng)獲取、整理、貯存、運用知識和獲得學(xué)習能力的過(guò)程,因此,我覺(jué)得在教學(xué)中,指導學(xué)生學(xué)習時(shí),應盡量避免單純地、直露地向學(xué)生灌輸某種學(xué)習方法。有效的能被學(xué)生接受的學(xué)法指導應是滲透在教學(xué)過(guò)程中進(jìn)行的,是通過(guò)優(yōu)化教學(xué)程序來(lái)增強學(xué)法指導的目的性和實(shí)效性。在本節課的教學(xué)中主要滲透以下幾個(gè)方面的學(xué)法指導。

  1、培養學(xué)生學(xué)會(huì )通過(guò)自學(xué)、觀(guān)察、實(shí)驗等方法獲取相關(guān)知識,使學(xué)生在探索研究過(guò)程中分析、歸納、推理能力得到提高。

  本節教師通過(guò)列舉具體事例來(lái)進(jìn)行分析,歸納出 ,并依

  據此知識與具體事例結合、推導出 ,這正是一個(gè)分析和推理的全過(guò)程。

  2、讓學(xué)生親自經(jīng)歷運用科學(xué)方法探索的過(guò)程。 主要是努力創(chuàng )設應用科學(xué)方法探索、解決問(wèn)題情境,讓學(xué)生在探索中體會(huì )科學(xué)方法,如在講授 時(shí),可通過(guò)

  演示,創(chuàng )設探索 規律的情境,引導學(xué)生以可靠的事實(shí)為基礎,經(jīng)過(guò)抽象思維揭示內在規律,從而使學(xué)生領(lǐng)悟到把可靠的事實(shí)和深刻的理論思維結合起來(lái)的特點(diǎn)。

  3、讓學(xué)生在探索性實(shí)驗中自己摸索方法,觀(guān)察和分析現象,從而發(fā)現“新”的問(wèn)題或探索出“新”的規律。從而培養學(xué)生的發(fā)散思維和收斂思維能力,激發(fā)學(xué)生的創(chuàng )造動(dòng)力。在實(shí)踐中要盡可能讓學(xué)生多動(dòng)腦、多動(dòng)手、多觀(guān)察、多交流、多分析;老師要給學(xué)生多點(diǎn)撥、多啟發(fā)、多激勵,不斷地尋找學(xué)生思維和操作上的閃光點(diǎn),及時(shí)總結和推廣。

  4、在指導學(xué)生解決問(wèn)題時(shí),引導學(xué)生通過(guò)比較、猜測、嘗試、質(zhì)疑、發(fā)現等探究環(huán)節選擇合適的概念、規律和解決問(wèn)題方法,從而克服思維定勢的消極影響,促進(jìn)知識的正向遷移。如教師引導學(xué)生對比中,蘊含的本質(zhì)差異,從而擺脫知識遷移的負面影響。這樣,既有利于學(xué)生養成認真分析過(guò)程、善于比較的好習慣,又有利于培養學(xué)生通過(guò)現象發(fā)掘知識內在本質(zhì)的能力。

  四、教學(xué)過(guò)程:

 。ㄒ唬、課題引入:

  教師創(chuàng )設問(wèn)題情景(創(chuàng )設情景:A、教師演示實(shí)驗。B、使用多媒體模擬一些比較有趣、與生活實(shí)踐比較有關(guān)的事例。C、講述數學(xué)科學(xué)史上的有關(guān)情況。)激發(fā)學(xué)生的探究欲望,引導學(xué)生提出接下去要研究的問(wèn)題。

 。ǘ、新課教學(xué):

  1、針對上面提出的問(wèn)題,設計學(xué)生動(dòng)手實(shí)踐,讓學(xué)生通過(guò)動(dòng)手探索有關(guān)的知識,并引導學(xué)生進(jìn)行交流、討論得出新知,并進(jìn)一步提出下面的問(wèn)題。

  2、組織學(xué)生進(jìn)行新問(wèn)題的實(shí)驗方法設計—這時(shí)在設計上最好是有對比性、數學(xué)方法性的設計實(shí)驗,指導學(xué)生實(shí)驗、通過(guò)多媒體的輔助,顯示學(xué)生的實(shí)驗數據,模擬強化出實(shí)驗情況,由學(xué)生分析比較,歸納總結出知識的結構。

 。ㄈ、實(shí)施反饋:

  1、課堂反饋,遷移知識(最好遷移到與生活有關(guān)的例子)。讓學(xué)生分析有關(guān)的問(wèn)題,實(shí)現知識的升華、實(shí)現學(xué)生的再次創(chuàng )新。

  2、課后反饋,延續創(chuàng )新。通過(guò)課后練習,學(xué)生互改作業(yè),課后研實(shí)驗,實(shí)現課堂內外的綜合,實(shí)現創(chuàng )新精神的延續。

  五、板書(shū)設計:

  在教學(xué)中我把黑板分為三部分,把知識要點(diǎn)寫(xiě)在左側,中間知識推導過(guò)程,右邊實(shí)例應用。

  六、說(shuō)課綜述:

  以上是我對《 》這節教材的認識和對教學(xué)過(guò)程的設計。在整個(gè)課堂中,我引導學(xué)生回顧前面學(xué)過(guò)的 知識,并把它運用到對的認識,使學(xué)生的認知活動(dòng)逐步深化,既掌握了知識,又學(xué)會(huì )了方法。

  總之,對課堂的設計,我始終在努力貫徹以教師為主導,以學(xué)生為主體,以問(wèn)題為基礎,以能力、方法為主線(xiàn),有計劃培養學(xué)生的自學(xué)能力、觀(guān)察和實(shí)踐能力、思維能力、應用知識解決實(shí)際問(wèn)題的能力和創(chuàng )造能力為指導思想。并且能從各種實(shí)際出發(fā),充分利用各種教學(xué)手段來(lái)激發(fā)學(xué)生的學(xué)習興趣,體現了對學(xué)生創(chuàng )新意識的培養。

高中數學(xué)說(shuō)課稿 篇6

  大家好,今天我向大家說(shuō)課的題目是《正弦定理》。下面我將從以下幾個(gè)方面介紹我這堂課的教學(xué)設計。

  一、教材分析

  本節知識是必修五第一章《解三角形》的第一節內容,與初中學(xué)習的三角形的邊和角的基本關(guān)系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時(shí)常有解三角形的問(wèn)題,而且解三角形和三角函數聯(lián)系在高考當中也時(shí)?家恍┙獯痤}。因此,正弦定理和余弦定理的知識非常重要。

  根據上述教材內容分析,考慮到學(xué)生已有的認知結構心理特征及原有知識水平,制定如下教學(xué)目標:

  認知目標:通過(guò)創(chuàng )設問(wèn)題情境,引導學(xué)生發(fā)現正弦定理的內容,掌握正弦定理的內容及其證明方法,使學(xué)生會(huì )運用正弦定理解決兩類(lèi)基本的解三角形問(wèn)題。

  能力目標:引導學(xué)生通過(guò)觀(guān)察,推導,比較,由特殊到一般歸納出正弦定理,培養學(xué)生的創(chuàng )新意識和觀(guān)察與邏輯思維能力,能體會(huì )用向量作為數形結合的工具,將幾何問(wèn)題轉化為代數問(wèn)題。

  情感目標:面向全體學(xué)生,創(chuàng )造平等的教學(xué)氛圍,通過(guò)學(xué)生之間、師生之間的交流、合作和評價(jià),調動(dòng)學(xué)生的主動(dòng)性和積極性,激發(fā)學(xué)生學(xué)習的興趣。

  教學(xué)重點(diǎn):正弦定理的內容,正弦定理的證明及基本應用。 教學(xué)難點(diǎn):已知兩邊和其中一邊的對角解三角形時(shí)判斷解的個(gè)數。

  二、教法

  根據教材的內容和編排的特點(diǎn),為是更有效地突出重點(diǎn),空破難點(diǎn),以學(xué)業(yè)生的發(fā)展為本,遵照學(xué)生的認識規律,本講遵照以教師為主導,以學(xué)生為主體,訓練為主線(xiàn)的指導思想, 采用探究式課堂教學(xué)模式,即在教學(xué)過(guò)程中,在教師的啟發(fā)引導下,以學(xué)生獨立自主和合作交流為前提,以“正弦定理的發(fā)現”為基本探究?jì)热,以生活?shí)際為參照對象,讓學(xué)生的思維由問(wèn)題開(kāi)始,到猜想的得出,猜想的探究,定理的推導,并逐步得到深化。

  三、學(xué)法

  指導學(xué)生掌握“觀(guān)察——猜想——證明——應用”這一思維方法,采取個(gè)人、小組、集體等多種解難釋疑的嘗試活動(dòng),將自己所學(xué)知識應用于對任意三角形性質(zhì)的探究。讓學(xué)生在問(wèn)題情景中學(xué)習,觀(guān)察,類(lèi)比,思考,探究,概括,動(dòng)手嘗試相結合,體現學(xué)生的主體地位,增強學(xué)生由特殊到一般的數學(xué)思維能力,形成了實(shí)事求是的科學(xué)態(tài)度,增強了鍥而不舍的求學(xué)精神。

  四、教學(xué)過(guò)程

  (一)創(chuàng )設情境(3分鐘)

  “興趣是最好的老師”,如果一節課有個(gè)好的開(kāi)頭,那就意味著(zhù)成功了一半,本節課由一個(gè)實(shí)際問(wèn)題引入,“工人師傅的一個(gè)三角形模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長(cháng)為1m,想修好這個(gè)零件,但他不知道AC和BC的長(cháng)度是多少好去截料,你能幫師傅這個(gè)忙嗎?”激發(fā)學(xué)生幫助別人的熱情和學(xué)習的興趣,從而進(jìn)入今天的學(xué)習課題。

  (二)猜想—推理—證明(15分鐘)

  激發(fā)學(xué)生思維,從自身熟悉的特例(直角三角形)入手進(jìn)行研究,發(fā)現正弦定理。 提問(wèn):那結論對任意三角形都適用嗎?(讓學(xué)生分小組討論,并得出猜想)

  在三角形中,角與所對的邊滿(mǎn)足關(guān)系

  注意:1.強調將猜想轉化為定理,需要嚴格的理論證明。

  2.鼓勵學(xué)生通過(guò)作高轉化為熟悉的直角三角形進(jìn)行證明。

  3.提示學(xué)生思考哪些知識能把長(cháng)度和三角函數聯(lián)系起來(lái),繼而思考向量分析層面,用數量積作為工具證明定理,體現了數形結合的數學(xué)思想。

  (三)總結--應用(3分鐘)

  1.正弦定理的內容,討論可以解決哪幾類(lèi)有關(guān)三角形的問(wèn)題。

  2.運用正弦定理求解本節課引入的三角形零件邊長(cháng)的問(wèn)題。自己參與實(shí)際問(wèn)題的解決,能激發(fā)學(xué)生知識后用于實(shí)際的價(jià)值觀(guān)。

  (四)講解例題(8分鐘)

  1.例1. 在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.

  例1簡(jiǎn)單,結果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來(lái)解三角形。

  2. 例2. 在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.

  例2較難,使學(xué)生明確,利用正弦定理求角有兩種可能。要求學(xué)生熟悉掌握已知兩邊和其中

  一邊的對角時(shí)解三角形的各種情形。完了把時(shí)間交給學(xué)生。

  (五)課堂練習(8分鐘)

  1.在△ABC中,已知下列條件,解三角形. (1)A=45°,C=30°,c=10cm (2)A=60°,B=45°,c=20cm

  2. 在△ABC中,已知下列條件,解三角形. (1)a=20cm,b=11cm,B=30° (2)c=54cm,b=39cm,C=115°

  學(xué)生板演,老師巡視,及時(shí)發(fā)現問(wèn)題,并解答。

  (六)小結反思(3分鐘)

  1.它表述了三角形的邊與對角的正弦值的關(guān)系。

  2.定理證明分別從直角、銳角、鈍角出發(fā),運用分類(lèi)討論的思想。

  3.會(huì )用向量作為數形結合的工具,將幾何問(wèn)題轉化為代數問(wèn)題。

  五、教學(xué)反思

  從實(shí)際問(wèn)題出發(fā),通過(guò)猜想、實(shí)驗、歸納等思維方法,最后得到了推導出正弦定理。我們研究問(wèn)題的突出特點(diǎn)是從特殊到一般,我們不僅收獲著(zhù)結論,而且整個(gè)探索過(guò)程我們也掌握了研究問(wèn)題的一般方法。在強調研究性學(xué)習方法,注重學(xué)生的主體地位,調動(dòng)學(xué)生積極性,使數學(xué)教學(xué)成為數學(xué)活動(dòng)的教學(xué)。