直線(xiàn)與方程課件
直線(xiàn)與方程課件主要讓學(xué)生掌握由一點(diǎn)和斜率導出直線(xiàn)方程的方法,掌握直線(xiàn)方程的點(diǎn)斜式、兩點(diǎn)式和直線(xiàn)方程的一般式,并能根據條件熟練地求出直線(xiàn)的方程。以下是小編整理的直線(xiàn)與方程課件,歡迎閱讀。
教學(xué)目標
。1)掌握由一點(diǎn)和斜率導出直線(xiàn)方程的方法,掌握直線(xiàn)方程的點(diǎn)斜式、兩點(diǎn)式和直線(xiàn)方程的一般式,并能根據條件熟練地求出直線(xiàn)的方程。
。2)理解直線(xiàn)方程幾種形式之間的內在聯(lián)系,能在整體上把握直線(xiàn)的方程。
。3)掌握直線(xiàn)方程各種形式之間的互化。
。4)通過(guò)直線(xiàn)方程一般式的教學(xué)培養學(xué)生全面、系統、周密地分析、討論問(wèn)題的能力。
。5)通過(guò)直線(xiàn)方程特殊式與一般式轉化的教學(xué),培養學(xué)生靈活的思維品質(zhì)和辯證唯物主義觀(guān)點(diǎn)。
。6)進(jìn)一步理解直線(xiàn)方程的概念,理解直線(xiàn)斜率的意義和解析幾何的思想方法。
教學(xué)建議
1、教材分析
。1)知識結構
由直線(xiàn)方程的概念和直線(xiàn)斜率的概念導出直線(xiàn)方程的點(diǎn)斜式;由直線(xiàn)方程的點(diǎn)斜式分別導出直線(xiàn)方程的斜截式和兩點(diǎn)式;再由兩點(diǎn)式導出截距式;最后都可以轉化歸結為直線(xiàn)的一般式;同時(shí)一般式也可以轉化成特殊式。
。2)重點(diǎn)、難點(diǎn)分析
、俦竟澋闹攸c(diǎn)是直線(xiàn)方程的點(diǎn)斜式、兩點(diǎn)式、一般式,以及根據具體條件求出直線(xiàn)的方程。
解析幾何有兩項根本性的任務(wù):一個(gè)是求曲線(xiàn)的方程;另一個(gè)就是用方程研究曲線(xiàn)。本節內容就是求直線(xiàn)的`方程,因此是非常重要的內容,它對以后學(xué)習用方程討論直線(xiàn)起著(zhù)直接的作用,同時(shí)也對曲線(xiàn)方程的學(xué)習起著(zhù)重要的作用。
直線(xiàn)的點(diǎn)斜式方程是平面解析幾何中所求出的第一個(gè)方程,是后面幾種特殊形式的源頭。學(xué)生對點(diǎn)斜式學(xué)習的效果將直接影響后繼知識的學(xué)習。
、诒竟澋碾y點(diǎn)是直線(xiàn)方程特殊形式的限制條件,直線(xiàn)方程的整體結構,直線(xiàn)與二元一次方程的關(guān)系證明。
2、教法建議
。1)教材中求直線(xiàn)方程采取先特殊后一般的思路,特殊形式的方程幾何特征明顯,但局限性強;一般形式的方程無(wú)任何限制,但幾何特征不明顯。教學(xué)中各部分知識之間過(guò)渡要自然流暢,不生硬。
。2)直線(xiàn)方程的一般式反映了直線(xiàn)方程各種形式之間的統一性,教學(xué)中應充分揭示直線(xiàn)方程本質(zhì)屬性,建立二元一次方程與直線(xiàn)的對應關(guān)系,為繼續學(xué)習“曲線(xiàn)方程”打下基礎。
直線(xiàn)一般式方程都是字母系數,在揭示這一概念深刻內涵時(shí),還需要進(jìn)行正反兩方面的分析論證。教學(xué)中應重點(diǎn)分析思路,還應抓住這一有利時(shí)使學(xué)生學(xué)會(huì )嚴謹科學(xué)的分類(lèi)討論方法,從而培養學(xué)生全面、系統、辯證、周密地分析、討論問(wèn)題的能力,特別是培養學(xué)生邏輯思維能力,同時(shí)培養學(xué)生辯證唯物主義觀(guān)點(diǎn)。
。3)在強調幾種形式互化時(shí)要向學(xué)生充分揭示各種形式的特點(diǎn),它們的幾何特征,參數的意義等,使學(xué)生明白為什么要轉化,并加深對各種形式的理解。
。4)教學(xué)中要使學(xué)生明白兩個(gè)獨立條件確定一條直線(xiàn),如兩個(gè)點(diǎn)、一個(gè)點(diǎn)和一個(gè)方向或其他兩個(gè)獨立條件。兩點(diǎn)確定一條直線(xiàn),這是學(xué)生很早就接觸的幾何公理,然而在解析幾何,平面向量等理論中,直線(xiàn)或向量的方向是極其重要的要素,解析幾何中刻畫(huà)直線(xiàn)方向的量化形式就是斜率。因此,直線(xiàn)方程的兩點(diǎn)式和點(diǎn)斜式在直線(xiàn)方程的幾種形式中占有很重要的地位,而已知兩點(diǎn)可以求得斜率,所以點(diǎn)斜式又可推出兩點(diǎn)式(斜截式和截距式僅是它們的特例),因此點(diǎn)斜式最重要。教學(xué)中應突出點(diǎn)斜式、兩點(diǎn)式和一般式三個(gè)教學(xué)高潮。
【直線(xiàn)與方程課件】相關(guān)文章:
精選《直線(xiàn)方程》測試題08-28
解簡(jiǎn)易方程數學(xué)課件05-04
數學(xué)課件《方程的意義》教學(xué)設計02-19
式與方程教學(xué)設計03-30
《實(shí)際問(wèn)題與方程》教學(xué)反思05-17
式與方程教學(xué)設計7篇03-30