- 初中數學(xué)課堂教學(xué)設計 推薦度:
- 相關(guān)推薦
初中數學(xué)課教學(xué)設計范文(精選10篇)
作為一名專(zhuān)為他人授業(yè)解惑的人民教師,編寫(xiě)教學(xué)設計是必不可少的,教學(xué)設計是把教學(xué)原理轉化為教學(xué)材料和教學(xué)活動(dòng)的計劃。教學(xué)設計要怎么寫(xiě)呢?下面是小編為大家收集的初中數學(xué)課教學(xué)設計范文,歡迎閱讀與收藏。
初中數學(xué)課教學(xué)設計 1
一、內容簡(jiǎn)介
本節課的主題:通過(guò)一系列的探究活動(dòng),引導學(xué)生從計算結果中總結出完全平方公式的兩種形式。
關(guān)鍵信息:
1、以教材作為出發(fā)點(diǎn),依據《數學(xué)課程標準》,引導學(xué)生體會(huì )、參與科學(xué)探究過(guò)程。首先提出等號左邊的兩個(gè)相乘的多項式和等號右邊得出的三項有什么關(guān)系。通過(guò)學(xué)生自主、獨立的發(fā)現問(wèn)題,對可能的答案做出假設與猜想,并通過(guò)多次的檢驗,得出正確的結論。學(xué)生通過(guò)收集和處理信息、表達與交流等活動(dòng),獲得知識、技能、方法、態(tài)度特別是創(chuàng )新精神和實(shí)踐能力等方面的發(fā)展。
2、用標準的數學(xué)語(yǔ)言得出結論,使學(xué)生感受科學(xué)的嚴謹,啟迪學(xué)習態(tài)度和方法。
二、學(xué)習者分析:
1、在學(xué)習本課之前應具備的基本知識和技能:
、偻(lèi)項的定義。
、诤喜⑼(lèi)項法則
、鄱囗検匠艘远囗検椒▌t。
2、學(xué)習者對即將學(xué)習的內容已經(jīng)具備的水平:
在學(xué)習完全平方公式之前,學(xué)生已經(jīng)能夠整理出公式的右邊形式。這節課的目的就是讓學(xué)生從等號的左邊形式和右邊形式之間的關(guān)系,總結出公式的應用方法。
三、教學(xué)/學(xué)習目標及其對應的課程標準:
。ㄒ唬┙虒W(xué)目標:
1、經(jīng)歷探索完全平方公式的`過(guò)程,進(jìn)一步發(fā)展符號感和推力能力。
2、會(huì )推導完全平方公式,并能運用公式進(jìn)行簡(jiǎn)單的計算。
。ǘ┲R與技能:經(jīng)歷從具體情境中抽象出符號的過(guò)程,認識有理數、實(shí)數、代數式、防城、不等式、函數;掌握必要的運算,(包括估算)技能;探索具體問(wèn)題中的數量關(guān)系和變化規律,并能運用代數式、防城、不等式、函數等進(jìn)行描述。
。ㄈ┙鉀Q問(wèn)題:能結合具體情景發(fā)現并提出數學(xué)問(wèn)題;嘗試從不同角度尋求解決問(wèn)題的方法,并能有效地解決問(wèn)題,嘗試評價(jià)不同方法之間的差異;通過(guò)對解決問(wèn)題過(guò)程的反思,獲得解決問(wèn)題的經(jīng)驗。
。ㄋ模┣楦信c態(tài)度:敢于面對數學(xué)活動(dòng)中的困難,并有獨立克服困難和運用知識解決問(wèn)題的成功體驗,有學(xué)好數學(xué)的自信心;并尊重與理解他人的見(jiàn)解;能從交流中獲益。
四、教育理念和教學(xué)方式:
1、教師是學(xué)生學(xué)習的組織者、促進(jìn)者、合作者:學(xué)生是學(xué)習的主人,在教師指導下主動(dòng)的、富有個(gè)性的學(xué)習,用自己的身體去親自經(jīng)歷,用自己的心靈去親自感悟。
教學(xué)是師生交往、積極互動(dòng)、共同發(fā)展的過(guò)程。當學(xué)生迷路的時(shí)候,教師不輕易告訴方向,而是引導他怎樣去辨明方向;當學(xué)生登山畏懼了的時(shí)候,教師不是拖著(zhù)他走,而是喚起他內在的精神動(dòng)力,鼓勵他不斷向上攀登。
2、采用問(wèn)題情景探究交流得出結論強化訓練的模式展開(kāi)教學(xué)。
3、教學(xué)評價(jià)方式:
。1)通過(guò)課堂觀(guān)察,關(guān)注學(xué)生在觀(guān)察、總結、訓練等活動(dòng)中的主動(dòng)參與程度與合作交流意識,及時(shí)給與鼓勵、強化、指導和矯正。
。2)通過(guò)判斷和舉例,給學(xué)生更多機會(huì ),在自然放松的狀態(tài)下,揭示思維過(guò)程和反饋知識與技能的掌握情況,使老師可以及時(shí)診斷學(xué)情,調查教學(xué)。
。3)通過(guò)課后訪(fǎng)談和作業(yè)分析,及時(shí)查漏補缺,確保達到預期的教學(xué)效果。
五、教學(xué)媒體:多媒體六、教學(xué)和活動(dòng)過(guò)程:
教學(xué)過(guò)程設計如下:
〈一〉、提出問(wèn)題
[引入]同學(xué)們,前面我們學(xué)習了多項式乘多項式法則和合并同類(lèi)項法則,通過(guò)運算下列四個(gè)小題,你能總結出結果與多項式中兩個(gè)單項式的關(guān)系嗎
。2m+3n)2=_______________,(—2m—3n)2=______________,
。2m—3n)2=_______________,(—2m+3n)2=_______________。
〈二〉、分析問(wèn)題
1、[學(xué)生回答]分組交流、討論
。2m+3n)2= 4m2+12mn+9n2,(—2m—3n)2= 4m2+12mn+9n2,
。2m—3n)2= 4m2—12mn+9n2,(—2m+3n)2= 4m2—12mn+9n2。
。1)原式的特點(diǎn)。
。2)結果的項數特點(diǎn)。
。3)三項系數的特點(diǎn)(特別是符號的特點(diǎn))。
。4)三項與原多項式中兩個(gè)單項式的關(guān)系。
2、[學(xué)生回答] 總結完全平方公式的語(yǔ)言描述:
兩數和的平方,等于它們平方的和,加上它們乘積的兩倍;
兩數差的平方,等于它們平方的和,減去它們乘積的兩倍。
3、[學(xué)生回答]完全平方公式的數學(xué)表達式:
。╝+b)2=a2+2ab+b2;
。╝—b)2=a2—2ab+b2。
〈三〉、運用公式,解決問(wèn)題
1、口答:(搶答形式,活躍課堂氣氛,激發(fā)學(xué)生的學(xué)習積極性)
。╩+n)2=____________, (m—n)2=_______________,
。ā猰+n)2=____________, (—m—n)2=______________,
。╝+3)2=______________, (—c+5)2=______________,
。ā7—a)2=______________, (0.5—a)2=______________。
2、判斷:
。 )① (a—2b)2= a2—2ab+b2
。 )② (2m+n)2= 2m2+4mn+n2
。 )③ (—n—3m)2= n2—6mn+9m2
。 )④ (5a+0.2b)2= 25a2+5ab+0.4b2
。 )⑤ (5a—0.2b)2= 5a2—5ab+0.04b2
。 )⑥ (—a—2b)2=(a+2b)2
。 )⑦ (2a—4b)2=(4a—2b)2
。 )⑧ (—5m+n)2=(—n+5m)2
3、小試牛刀
、 (x+y)2 =______________;② (—y—x)2 =_______________;
、 (2x+3)2 =_____________;④ (3a—2)2 =_______________;
、 (2x+3y)2 =____________;⑥ (4x—5y)2 =______________;
、 (0.5m+n)2 =___________;⑧ (a—0.6b)2 =_____________。
〈四〉、[學(xué)生小結]
你認為完全平方公式在應用過(guò)程中,需要注意那些問(wèn)題
。1)公式右邊共有3項。
。2)兩個(gè)平方項符號永遠為正。
。3)中間項的符號由等號左邊的兩項符號是否相同決定。
。4)中間項是等號左邊兩項乘積的2倍。
〈五〉、冒險島:
。1)(—3a+2b)2=________________________________
。2)(—7—2m) 2 =__________________________________
。3)(—0.5m+2n) 2=_______________________________
。4)(3/5a—1/2b) 2=________________________________
。5)(mn+3) 2=__________________________________
。6)(a2b—0.2) 2=_________________________________
。7)(2xy2—3x2y) 2=_______________________________
。8)(2n3—3m3) 2=________________________________
〈六〉、學(xué)生自我評價(jià)
[小結]通過(guò)本節課的學(xué)習,你有什么收獲和感悟
本節課,我們自己通過(guò)計算、分析結果,總結出了完全平方公式。在知識探索的過(guò)程中,同學(xué)們積極思考,大膽探索,團結協(xié)作共同取得了進(jìn)步。
〈七〉[作業(yè)] P34隨堂練習P36習題
初中數學(xué)課教學(xué)設計 2
教學(xué)目標:
1、經(jīng)歷收集數據、分析數據的活動(dòng),體會(huì )統計在實(shí)際生活中的應用。
2、收集統計在生活中應用的例子,整理收集數據的方法。
3、在解決問(wèn)題的過(guò)程中,整理所學(xué)習的統計圖,和統計量,能用自己的語(yǔ)言描述過(guò)各種統計圖的特點(diǎn),掌握整理收集數據的方法。
教學(xué)過(guò)程:
一、課前預習,出示預習提綱:
1、我們學(xué)習了哪幾種統計圖?
2、這幾種統計圖各有什么特點(diǎn)?
3、概率的知識有哪些?
二、展示與交流
(一)提出問(wèn)題
1、(出示問(wèn)題情境)我們班要和希望小學(xué)的.六(1)班建立手拉手班級,怎么樣向他們介紹我們班的一些情況呢?(指名回答)
2、師:先獨立列出幾個(gè)你想調查的問(wèn)題。(寫(xiě)在練習本上)
3、四人小組交流,整理出你們小組都比較感興趣的,又能實(shí)施的3個(gè)問(wèn)題。(小組匯報、交流、整理)
4、接著(zhù)全班匯報交流(師羅列在黑板上)
師:大家想調查這么多的問(wèn)題,現在我們班選擇其中有價(jià)值又能實(shí)施的問(wèn)題進(jìn)行調查。(師根據生的回答進(jìn)行歸納、整理)
(二)收集數據和整理數據
1、師:調查這幾個(gè)問(wèn)題,你需要收集哪些數據?怎么樣收集這些數據?與同伴交流收集數據的方法。
2、師:開(kāi)展實(shí)際調查的話(huà),如何進(jìn)行調查比較有效?在調查的時(shí)候,大家需要注意什么?
(三)開(kāi)展調查
1、針對學(xué)生提出的某個(gè)問(wèn)題,先組織小組有效的開(kāi)展收集和整理數據的活動(dòng),然后把數據記錄下來(lái),并進(jìn)行整理。
2、師:誰(shuí)來(lái)說(shuō)一說(shuō)你們小組是怎么樣分工,怎么樣調查和記錄數據的?(指名匯報)
3、全班匯總、整理、歸納各小組數據。(板書(shū))
4、師:分析上面的數據,你能得到哪些信息?
5、師:根據整理的數據,想一想繪制什么統計圖比較好呢?
6、師:根據這些信息,你還能提出什么數學(xué)問(wèn)題?
(四)回顧統計活動(dòng)
1、師:在剛才的統計活動(dòng),我們都做了些什么?你能按順序說(shuō)一說(shuō)嗎?
師板書(shū):提出問(wèn)題——收集數據——整理數據——分析數據——作出決策。
2、收集在生活中應用統計的例子,并說(shuō)說(shuō)這些例子中的數據告訴人們哪些信息。(全班交流)
指名同學(xué)匯報,其他同學(xué)注意聽(tīng),并指出這個(gè)同學(xué)舉的例子中你可以獲得什么信息?
3、結合生活中的例子說(shuō)說(shuō)收集數據有哪些方法?
(1)先讓學(xué)生在小組內交流,引導學(xué)生結合例子(充分利用第2題中收集來(lái)的實(shí)例)來(lái)說(shuō)說(shuō)自己的方法。
(2)師歸納:常用的收集數據的方法有:查閱資料、詢(xún)問(wèn)他人、調查實(shí)驗等。
4、師:同學(xué)們,我們已經(jīng)對統計表和統計圖進(jìn)行了系統的學(xué)習,回憶一下我們已經(jīng)學(xué)過(guò)了哪些統計圖,對這些統計圖,你已經(jīng)知道了哪些知識?
初中數學(xué)課教學(xué)設計 3
教學(xué)目標
。1)認知目標
理解并掌握分式的乘除法法則,能進(jìn)行簡(jiǎn)單的分式乘除法運算,能解決一些與分式乘除有關(guān)的實(shí)際問(wèn)題。
。2)技能目標
經(jīng)歷從分數的乘除法運算到分式的乘除法運算的過(guò)程,培養學(xué)生類(lèi)比的探究能力,加深對從特殊到一般數學(xué)的思想認識。
。3)情感態(tài)度與價(jià)值觀(guān)
教學(xué)中讓學(xué)生在主動(dòng)探究,合作交流中滲透類(lèi)比轉化的思想,使學(xué)生在學(xué)知識的同時(shí)感受探索的樂(lè )趣和成功的體驗。
教學(xué)重難點(diǎn)
重點(diǎn):運用分式的乘除法法則進(jìn)行運算。
難點(diǎn):分子、分母為多項式的分式乘除運算。
教學(xué)過(guò)程
。ㄒ唬┨岢鰡(wèn)題,引入課題
俗話(huà)說(shuō):“好的開(kāi)端是成功的一半”同樣,好的引入能激發(fā)學(xué)生興趣和求知欲。因此我用實(shí)際出發(fā)提出現實(shí)生活中的問(wèn)題:
問(wèn)題1:求容積的高是,(引出分式乘法的學(xué)習需要)。
問(wèn)題2:求大拖拉機的工作效率是小拖拉機的工作效率的倍,(引出分式除法的學(xué)習需要)。
從實(shí)際出發(fā),引出分式的乘除的實(shí)在存在意義,讓學(xué)生感知學(xué)習分式的.乘法和除法的實(shí)際需要,從而激發(fā)學(xué)生興趣和求知欲。
。ǘ╊(lèi)比聯(lián)想,探究新知
從學(xué)生熟悉的分數的乘除法出發(fā),引發(fā)學(xué)生的學(xué)習興趣。
解后總結概括:
。1)式是什么運算?依據是什么?
。2)式又是什么運算?依據是什么?能說(shuō)出具體內容嗎?(如果有困難教師應給于引導,學(xué)生應該能說(shuō)出依據的是:分數的乘法和除法法則)教師加以肯定,并指出與分數的乘除法法則類(lèi)似,引導學(xué)生類(lèi)比分數的乘除法則,猜想出分式的乘除法則。
。ǚ质降某顺ǚ▌t)
乘法法則:分式乘以分式,用分子的積作為積的分子,分母的積作為積的分母。
除法法則:分式除以分式,把除式的分子、分母顛倒位置后,與被除式相乘。
。ㄈ├}分析,應用新知
師生活動(dòng):教師參與并指導,學(xué)生獨立思考,并嘗試完成例題。
P11的例1,在例題分析過(guò)程中,為了突出重點(diǎn),應多次回顧分式的乘除法法則,使學(xué)生耳熟能詳。P11例2是分子、分母為多單項式的分式乘除法則的運用,為了突破本節課的難點(diǎn)我采取板演的形式,和學(xué)生一起詳細分析,提醒學(xué)生關(guān)注易錯易漏的環(huán)節,學(xué)會(huì )解題的方法。
。ㄋ模┚毩曥柟,培養能力
P13練習第2題的(1)、(3)、(4)與第3題的(2)。
師生活動(dòng):教師出示問(wèn)題,學(xué)生獨立思考解答,并讓學(xué)生板演或投影展示學(xué)生的解題過(guò)程。
通過(guò)這一環(huán)節,主要是為了通過(guò)課堂跟蹤反饋,達到鞏固提高的目的,進(jìn)一步熟練解題的思路,也遵循了鞏固與發(fā)展相結合的原則。讓學(xué)生板演,一是為了暴露問(wèn)題,二是為了規范解題格式和結果。
。ㄎ澹┱n堂小結,回扣目標
引導學(xué)生自主進(jìn)行課堂小結:
1、本節課我們學(xué)習了哪些知識?
2、在知識應用過(guò)程中需要注意什么?
3、你有什么收獲呢?
師生活動(dòng):學(xué)生反思,提出疑問(wèn),集體交流。
。┎贾米鳂I(yè)
教科書(shū)習題6.2第1、2(必做)練習冊P(選做),我設計了必做題和選做題,必做題是對本節課內容的一個(gè)反饋,選做題是對本節課知識的一個(gè)延伸。
板書(shū)設計
在本節課中我將采用提綱式的板書(shū)設計,因為提綱式—條理清楚、從屬關(guān)系分明,給人以清晰完整的印象,便于學(xué)生對教材內容和知識體系的理解和記憶。
初中數學(xué)課教學(xué)設計 4
一、目的要求
1、使學(xué)生初步理解一次函數與正比例函數的概念。
2、使學(xué)生能夠根據實(shí)際問(wèn)題中的條件,確定一次函數與正比例函數的解析式。
二、內容分析
1、初中主要是通過(guò)幾種簡(jiǎn)單的函數的初步介紹來(lái)學(xué)習函數的,前面三小節,先學(xué)習函數的概念與表示法,這是為學(xué)習后面的幾種具體的函數作準備的,從本節開(kāi)始,將依次學(xué)習一次函數(包括正比例函數)、二次函數與反比例函數的有關(guān)知識,大體上,每種函數是按函數的解析式、圖象及性質(zhì)這個(gè)順序講述的,通過(guò)這些具體函數的學(xué)習,學(xué)生可以加深對函數意義、函數表示法的認識,并且,結合這些內容,學(xué)生還會(huì )逐步熟悉函數的知識及有關(guān)的數學(xué)思想方法在解決實(shí)際問(wèn)題中的應用。
2、舊教材在講幾個(gè)具體的函數時(shí),是按先講正反比例函數,后講一次、二次函數順序編排的,這是適當照顧了學(xué)生在小學(xué)數學(xué)中學(xué)了正反比例關(guān)系的知識,注意了中小學(xué)的銜接,新教材則是安排先學(xué)習一次函數,并且,把正比例函數作為一次函數的特例予以介紹,而最后才學(xué)習反比例函數,為什么這樣安排呢?第一,這樣安排,比較符合學(xué)生由易到難的認識規津,從函數角度看,一次函數的解析式、圖象與性質(zhì)都是比較簡(jiǎn)單的,相對來(lái)說(shuō),反比例函數就要復雜一些了,特別是,反比例函數的`圖象是由兩條曲線(xiàn)組成的,先學(xué)習反比例函數難度可能要大一些。第二,把正比例函數作為一次函數的特例介紹,既可以提高學(xué)習效益,又便于學(xué)生了解正比例函數與一次函數的關(guān)系,從而,可以更好地理解這兩種函數的概念、圖象與性質(zhì)。
3、“函數及其圖象”這一章的重點(diǎn)是一次函數的概念、圖象和性質(zhì),一方面,在學(xué)生初次接觸函數的有關(guān)內容時(shí),一定要結合具體函數進(jìn)行學(xué)習,因此,全章的主要內容,是側重在具體函數的講述上的。另一方面,在大綱規定的幾種具體函數中,一次函數是最基本的,教科書(shū)對一次函數的討論也比較全面。通過(guò)一次函數的學(xué)習,學(xué)生可以對函數的研究方法有一個(gè)初步的認識與了解,從而能更好地把握學(xué)習二次函數、反比例函數的學(xué)習方法。
三、教學(xué)過(guò)程
復習提問(wèn):
1、什么是函數?
2、函數有哪幾種表示方法?
3、舉出幾個(gè)函數的例子。
新課講解:
可以選用提問(wèn)時(shí)學(xué)生舉出的例子,也可以直接采用教科書(shū)中的四個(gè)函數的例子。然后讓學(xué)生觀(guān)察這些例子(實(shí)際上均是一次函數的解析式),y=x,s=3t等。觀(guān)察時(shí),可以按下列問(wèn)題引導學(xué)生思考:
(1)這些式子表示的是什么關(guān)系?(在學(xué)生明確這些式子表示函數關(guān)系后,可指出,這是函數。)
(2)這些函數中的自變量是什么?函數是什么?(在學(xué)生分清后,可指出,式子中等號左邊的y與s是函數,等號右邊是一個(gè)代數式,其中的字母x與t是自變量。)
(3)在這些函數式中,表示函數的自變量的式子,分別是關(guān)于自變量的什么式呢?(這題牽扯到有關(guān)整式的基本概念,表示函數的自變量的式子也就是等號右邊的式子,都是關(guān)于自變量的一次式。)
(4)x的一次式的一般形式是什么?(結合一元一次方程的有關(guān)知識,可以知道,x的一次式是kx+b(k≠0)的形式。)
由以上的層層設問(wèn),最后給出一次函數的定義。
一般地,如果y=kx+b(k,b是常數,k≠0)那么,y叫做x的一次函數。
對這個(gè)定義,要注意:
(1)x是變量,k,b是常數;
(2)k≠0 (當k=0時(shí),式子變形成y=b的形式。b是x的0次式,y=b叫做常數函數,這點(diǎn),不一定向學(xué)生講述。)
由一次函數出發(fā),當常數b=0時(shí),一次函數kx+b(k≠0)就成為:y=kx(k是常數,k≠0)我們把這樣的函數叫正比例函數。
在講述正比例函數時(shí),首先,要注意適當復習小學(xué)學(xué)過(guò)的正比例關(guān)系,小學(xué)數學(xué)是這樣陳述的:
兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著(zhù)變化,如果這兩種量中相對應的兩個(gè)數的比值(也就是商)一定,這兩種量就叫做成正比例的量,它們的關(guān)系叫做正比例關(guān)系。
寫(xiě)成式子是(一定)
需指出,小學(xué)因為沒(méi)有學(xué)過(guò)負數,實(shí)際的例子都是k>0的例子,對于正比例函數,k也為負數。
其次,要注意引導學(xué)生找出一次函數與正比例函數之間的關(guān)系:正比例函數是特殊的一次函數。
課堂練習:
教科書(shū)13、4節練習第1題。
初中數學(xué)課教學(xué)設計 5
一、素質(zhì)教育目標
。ㄒ唬┲R教學(xué)點(diǎn):
使學(xué)生會(huì )用列一元二次方程的方法解有關(guān)面積、體積方面的應用問(wèn)題
。ǘ┠芰τ柧汓c(diǎn):
進(jìn)一步培養學(xué)生化實(shí)際問(wèn)題為數學(xué)問(wèn)題的能力和分析問(wèn)題解決問(wèn)題的能力,培養用數學(xué)的意識
二、教學(xué)重點(diǎn)、難點(diǎn)
1.教學(xué)重點(diǎn):
會(huì )用列一元二次方程的方法解有關(guān)面積、體積方面的應用題
2.教學(xué)難點(diǎn):
找等量關(guān)系列一元二次方程解應用題時(shí),應注意是方程的`解,但不一定符合題意,因此求解后一定要檢驗,以確定適合題意的解.例如線(xiàn)段的長(cháng)度不為負值,人的個(gè)數不能為分數等
三、教學(xué)步驟
。ㄒ唬┟鞔_目標
。ǘ┱w感知
。ㄈ┲攸c(diǎn)、難點(diǎn)的學(xué)習和目標完成過(guò)程
1.復習提問(wèn)
。1)列方程解應用題的步驟?
。2)長(cháng)方形的周長(cháng)、面積?長(cháng)方體的體積?
2.例1?現有長(cháng)方形紙片一張,長(cháng)19cm,寬15cm,需要剪去邊長(cháng)是多少的小正方形才能做成底面積為77cm2的無(wú)蓋長(cháng)方體型的紙盒?
解:設需要剪去的小正方形邊長(cháng)為xcm,則盒底面長(cháng)方形的長(cháng)為(19—2x)cm,寬為(15—2x)cm,
據題意:(19—2x)(15—2x)=77
整理后,得x2—17x+52=0,
解得x1=4,x2=13
∴當x=13時(shí),15—2x=—11(不合題意,舍去)
答:截取的小正方形邊長(cháng)應為4cm,可制成符合要求的無(wú)蓋盒子
練習1章節前引例.
學(xué)生筆答、板書(shū)、評價(jià)
練習2教材P。42中4
學(xué)生筆答、板書(shū)、評價(jià)
注意:全面積=各部分面積之和
剩余面積=原面積—截取面積
例2要做一個(gè)容積為750cm3,高是6cm,底面的長(cháng)比寬多5cm的長(cháng)方形匣子,底面的長(cháng)及寬應該各是多少(精確到0.1cm)?
分析:底面的長(cháng)和寬均可用含未知數的代數式表示,則長(cháng)×寬×高=體積,這樣便可得到含有未知數的等式——方程
解:長(cháng)方體底面的寬為xcm,則長(cháng)為(x+5)cm,
解:長(cháng)方體底面的寬為xcm,則長(cháng)為(x+5)cm,
據題意,6x(x+5)=750,
整理后,得x2+5x—125=0
解這個(gè)方程x1=9.0,x2=—14.0(不合題意,舍去)
當x=9.0時(shí),x+17=26.0,x+12=21.0.
答:可以選用寬為21cm,長(cháng)為26cm的長(cháng)方形鐵皮
教師引導,學(xué)生板書(shū),筆答,評價(jià)
。ㄋ模┛偨Y、擴展
1.有關(guān)面積和體積的應用題均可借助圖示加以分析,便于理解題意,搞清已知量與未知量的相互關(guān)系
2.要深刻理解題意中的已知條件,正確決定一元二次方程的取舍問(wèn)題,例如線(xiàn)段的長(cháng)不能為負
3.進(jìn)一步體會(huì )數字在實(shí)踐中的應用,培養學(xué)生分析問(wèn)題、解決問(wèn)題的能力
四、布置作業(yè)
教材P42中A3、6、7
教材P41中3、4
初中數學(xué)課教學(xué)設計 6
教學(xué)目的
1、使學(xué)生了解無(wú)理數和實(shí)數的概念,掌握實(shí)數的分類(lèi),會(huì )準確判斷一個(gè)數是有理數還是無(wú)理數。
2、使學(xué)生能了解實(shí)數絕對值的意義。
3、使學(xué)生能了解數軸上的點(diǎn)具有一一對應關(guān)系。
4、由實(shí)數的分類(lèi),滲透數學(xué)分類(lèi)的思想。
5、由實(shí)數與數軸的一一對應,滲透數形結合的思想。
教學(xué)分析
重點(diǎn):無(wú)理數及實(shí)數的概念。
難點(diǎn):有理數與無(wú)理數的區別,點(diǎn)與數的`一一對應。
教學(xué)過(guò)程
一、復習
1、什么叫有理數?
2、有理數可以如何分類(lèi)?
。ò炊x分與按大小分。)
二、新授
1、無(wú)理數定義:無(wú)限不循環(huán)小數叫做無(wú)理數。
判斷:無(wú)限小數都是無(wú)理數;無(wú)理數都是無(wú)限小數;帶根號的數都是無(wú)理數。
2、實(shí)數的定義:有理數與無(wú)理數統稱(chēng)為實(shí)數。
3、按課本中列表,將各數間的聯(lián)系介紹一下。
除了按定義還能按大小寫(xiě)出列表。
4、實(shí)數的相反數:
5、實(shí)數的絕對值:
6、實(shí)數的運算
講解例1,加上(3)若|x|=π(4)若|x-1|= ,那么x的值是多少?
例2,判斷題:
。1)任何實(shí)數的偶次冪是正實(shí)數。( )
。2)在實(shí)數范圍內,若| x|=|y|則x=y。( )
。3)0是最小的實(shí)數。( )
。4)0是絕對值最小的實(shí)數。( )
解:略
三、練習
P148 練習:3、4、5、6。
四、小結
1、今天我們學(xué)習了實(shí)數,請同學(xué)們首先要清楚,實(shí)數是如何定義的,它與有理數是怎樣的關(guān)系,二是對實(shí)數兩種不同的分類(lèi)要清楚。
2、要對應有理數的相反數與絕對值定義及運算律和運算性質(zhì),來(lái)理解在實(shí)數中的運用。
五、作業(yè)
1、P150 習題A:3。
2、基礎訓練:同步練習1。
初中數學(xué)課教學(xué)設計 7
一、教學(xué)目標
1、了解二次根式的意義;
2、掌握用簡(jiǎn)單的一元一次不等式解決二次根式中字母的取值問(wèn)題;
3、掌握二次根式的性質(zhì)和,并能靈活應用;
4、通過(guò)二次根式的計算培養學(xué)生的邏輯思維能力;
5、通過(guò)二次根式性質(zhì)和的介紹滲透對稱(chēng)性、規律性的數學(xué)美。
二、教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):
。1)二次根的意義;
。2)二次根式中字母的取值范圍。
難點(diǎn):確定二次根式中字母的取值范圍。
三、教學(xué)方法
啟發(fā)式、講練結合。
四、教學(xué)過(guò)程
。ㄒ唬⿵土曁釂(wèn)
1、什么叫平方根、算術(shù)平方根?
2、說(shuō)出下列各式的意義,并計算
。ǘ┮胄抡n
新課:二次根式
定義:式子叫做二次根式。
對于請同學(xué)們討論論應注意的問(wèn)題,引導學(xué)生總結:
。1)式子只有在條件a≥0時(shí)才叫二次根式,是二次根式嗎?呢?
若根式中含有字母必須保證根號下式子大于等于零,因此字母范圍的限制也是根式的一部分。
。2)是二次根式,而,提問(wèn)學(xué)生:2是二次根式嗎?顯然不是,因此二次根式指的是某種式子的“外在形態(tài)”。請學(xué)生舉出幾個(gè)二次根式的例子,并說(shuō)明為什么是二次根式。下面例題根據二次根式定義,由學(xué)生分析、回答。
例1當a為實(shí)數時(shí),下列各式中哪些是二次根式?
例2 x是怎樣的實(shí)數時(shí),式子在實(shí)數范圍有意義?
解:略。
說(shuō)明:這個(gè)問(wèn)題實(shí)質(zhì)上是在x是什么數時(shí),x—3是非負數,式子有意義。
例3當字母取何值時(shí),下列各式為二次根式:
分析:由二次根式的'定義,被開(kāi)方數必須是非負數,把問(wèn)題轉化為解不等式。
解:(1)∵a、b為任意實(shí)數時(shí),都有a2+b2≥0,∴當a、b為任意實(shí)數時(shí),是二次根式。
。2)—3x≥0,x≤0,即x≤0時(shí),是二次根式。
。3),且x≠0,∴x>0,當x>0時(shí),是二次根式。
。4),即,故x—2≥0且x—2≠0,∴x>2,當x>2時(shí),是二次根式。
例4下列各式是二次根式,求式子中的字母所滿(mǎn)足的條件:
分析:這個(gè)例題根據二次根式定義,讓學(xué)生分析式子中字母應滿(mǎn)足的條件,進(jìn)一步鞏固二次根式的定義,。即:只有在條件a≥0時(shí)才叫二次根式,本題已知各式都為二次根式,故要求各式中的被開(kāi)方數都大于等于零。
解:(1)由2a+3≥0,得。
。2)由,得3a—1>0,解得。
。3)由于x取任何實(shí)數時(shí)都有|x|≥0,因此,|x|+0.1>0,于是,式子是二次根式。所以所求字母x的取值范圍是全體實(shí)數。
。4)由—b2≥0得b2≤0,只有當b=0時(shí),才有b2=0,因此,字母b所滿(mǎn)足的條件是:b=0。
初中數學(xué)課教學(xué)設計 8
【教學(xué)目標】
1、掌握多邊形的內角和的計算方法,并能用內角和知識解決一些簡(jiǎn)單的問(wèn)題。
2、經(jīng)歷探索多邊形內角和計算公式的過(guò)程,體會(huì )如何探索研究問(wèn)題。
3、通過(guò)將多邊形"分割"為三角形的過(guò)程體驗,初步認識"轉化"的數學(xué)思想。
【教學(xué)重點(diǎn)與教學(xué)難點(diǎn)】
1、重點(diǎn):多邊形的內角和公式。
2、難點(diǎn):多邊形內角和的推導。
3、關(guān)鍵:多邊形"分割"為三角形。
【教具準備】
三角板、卡紙
【教學(xué)過(guò)程】
一、創(chuàng )設情景,揭示問(wèn)題
1、在一次數學(xué)基礎知識搶答賽中,老師出了這么一個(gè)問(wèn)題,一個(gè)五邊形的所有角相加等于多少度?一個(gè)學(xué)生馬上能回答,你們能嗎?
2、教具演示:將一個(gè)五邊形沿對角線(xiàn)剪開(kāi),能分割成幾個(gè)三角形?
你能說(shuō)出五邊形的內角和是多少度嗎?(點(diǎn)題)意圖:利用搶答問(wèn)題和教具演示,調動(dòng)學(xué)生的學(xué)習興趣和注意力
二、探索研究學(xué)會(huì )新知
1、回顧舊知,引出問(wèn)題:
。1)三角形的內角和等于_________。外角和等于____________
。2)長(cháng)方形的內角和等于_____,正方形的內角和等于__________。
2、探索四邊形的`內角和:
。1)學(xué)生思考,同學(xué)討論交流。
。2)學(xué)生敘述對四邊形內角和的認識(第一二組通過(guò)測量相加,第三四組通過(guò)畫(huà)對角線(xiàn)分成兩個(gè)三角形。)回顧三角形,正方形,長(cháng)方形內角和,使學(xué)生對新問(wèn)題進(jìn)行思考與猜想。以四邊形的內角和作為探索多邊形的。突破口。
。3)引導學(xué)生用"分割法"探索四邊形的內角和:
方法一:連接一條對角線(xiàn),分成2個(gè)三角形:
180°+180°=360°
從簡(jiǎn)單的思維方式發(fā)散學(xué)生的想象力達到"分割"問(wèn)題,并讓學(xué)生發(fā)現問(wèn)題,解決問(wèn)題教學(xué)步驟教學(xué)內容備注方法二:在四邊形內部任取一點(diǎn),與頂點(diǎn)連接組成4個(gè)三角形。
180°×4-360°=360°
3、探索多邊形內角和的問(wèn)題,提出階梯式的問(wèn)題:
你能?chē)L試用上面的方法一求出五邊形的內角和嗎?(第一二組)
你能?chē)L試用上面的方法一求出六邊形的內角和嗎?(第三,四組)那么n邊形呢?完成后填表:
n邊形3456.。n分成三角形的個(gè)數1234。n—2內角和。
4、及時(shí)運用,掌握新知:
。1)一個(gè)八邊形的內角和是_____________度
。2)一個(gè)多邊形的內角和是720度,這個(gè)多邊形是_____邊形
。3)一個(gè)正五邊形的每一個(gè)內角是________,那么正六邊形的每個(gè)內角是_________
通過(guò)學(xué)生動(dòng)手去用分割法求五(六)邊形的內角和,從簡(jiǎn)單到復雜,從而歸納出n邊形的內角和。
三、點(diǎn)例透析
運用新知例題:想一想:如果一個(gè)四邊形的一組對角互補,那么另一組對角有什么關(guān)系呢?
四、應用訓練強化理解
4、第83頁(yè)練習1和2多邊形內角和定理的應用
五、知識回放
課堂小結提問(wèn)方式:本節課我們學(xué)習了什么?
1、多邊形內角和公式。
2、多邊形內角和計算是通過(guò)轉化為三角形。
六、作業(yè)練習
1、書(shū)面作業(yè):
2、課外練習:
初中數學(xué)課教學(xué)設計 9
一、教學(xué)目標:
。1)學(xué)生在教師引導下,積極主動(dòng)地經(jīng)歷探索三角形全等的條件的過(guò)程,體會(huì )利用操作、歸納獲得數學(xué)結論的過(guò)程。
。2)掌握三角形全等的“邊邊邊”、“邊角邊”、“角邊角”、“角角邊”的判定方法,了解三角形的穩定性,能用三角形的全等解決一些實(shí)際問(wèn)題。
。3)培養學(xué)生的空間觀(guān)念,推理能力,發(fā)展有條理地表達能力,積累數學(xué)活動(dòng)經(jīng)驗。
二、教學(xué)的重點(diǎn)與難點(diǎn):
重點(diǎn):三角形全等條件的探索過(guò)程是本節課的重點(diǎn)。
從設置情景提出問(wèn)題,到動(dòng)手操作,交流,直至歸納得出結論,整個(gè)過(guò)程學(xué)生不僅得到了兩個(gè)三角形全等的條件,更重要得是經(jīng)歷了知識的形成過(guò)程,體會(huì )了一種分析問(wèn)題的方法,積累了數學(xué)活動(dòng)經(jīng)驗,這將有利于學(xué)生更好的理解數學(xué),應用數學(xué)。
難點(diǎn):三角形全等條件的探索過(guò)程,特別是創(chuàng )設出問(wèn)題后,學(xué)生面對開(kāi)放性問(wèn)題,要做出全面、正確得分析,并對各種情況進(jìn)行討論,對初一學(xué)生有一定的難度。
根據初一學(xué)生年齡、生理及心理特征,還不具備獨立系統地推理論證幾何問(wèn)題的能力,思維受到一定的局限,考慮問(wèn)題不夠全面,因此要充分發(fā)揮教師的主導作用,適時(shí)點(diǎn)撥、引導,盡可能調動(dòng)所有學(xué)生的積極性、主動(dòng)性參與到合作探討中來(lái),使學(xué)生在與他人的合作交流中獲取新知,并使個(gè)性思維得以發(fā)展。
三、教學(xué)過(guò)程
電腦顯示,帶領(lǐng)學(xué)生復習全等三角定義及其性質(zhì)。電腦顯示,小明畫(huà)了一個(gè)三角形,怎樣才能畫(huà)一個(gè)三角形與他的三角形全等?我們知道全等三角形三條邊分別對應相等,三個(gè)角分別對應相等,那麼,反之這六個(gè)元素分別對應,這樣的兩個(gè)三角形一定全等。但是,是否一定需要六個(gè)條件呢?條件能否盡可能少嗎?對學(xué)生分類(lèi)中出現的問(wèn)題,予以糾正,對學(xué)生提出的解決問(wèn)題的不同策略,要給予肯定和鼓勵,以滿(mǎn)足多樣化的學(xué)生需要,發(fā)展學(xué)生個(gè)性思維。
按照三角形“邊、角”元素進(jìn)行分類(lèi),師生共同歸納得出:
1、一個(gè)條件:一角,一邊
2、兩個(gè)條件:兩角;兩邊;一角一邊
3、三個(gè)條件:三角;三邊;兩角一邊;兩邊一角
按以上分類(lèi)順序動(dòng)腦、動(dòng)手操作,驗證。
教師收集學(xué)生的'作品,加以比較,得出結論:
只給出一個(gè)或兩個(gè)條件時(shí),都不能保證所畫(huà)出的三角形一定全等。
下面將研究三個(gè)條件下三角形全等的判定。
。1)已知三角形的三個(gè)角分別為40°、60°、80°,畫(huà)出這個(gè)三角形,并與同伴比較是否全等。
學(xué)生得出結論后,再舉例體會(huì )一下。舉例說(shuō)明:
如老師上課用的三角尺與同學(xué)用的三角板三個(gè)角分別對應相等,但一個(gè)大一個(gè)小,很顯然不全等;
再如同是:等邊三角形,邊長(cháng)不等,兩個(gè)三角形也不全等。等等。
。2)已知三角形三條邊分別是4cm,5cm,7cm,畫(huà)出這個(gè)三角形,并與同伴比較是否全等。
板演:三邊對應相等的兩個(gè)三角形全等,簡(jiǎn)寫(xiě)為“邊邊邊”或“SSS”。
由上面的結論可知:只要三角形三邊的長(cháng)度確定了,這個(gè)三角形的形狀和大小就確定了。
實(shí)物演示:
由三根木條釘成的一個(gè)三角形框架,它的大小和形狀是固定不變的,三角形的這個(gè)性質(zhì)叫三角形的穩定性。
舉例說(shuō)明該性質(zhì)在生活中的應用。
類(lèi)比著(zhù)三角形,讓學(xué)生動(dòng)手操作,研究四邊形、五邊性有無(wú)穩定性。
圖形的穩定性與不穩定性在生活中都有其作用,讓學(xué)生舉例說(shuō)明。
題組練習(略)
3、(對有能力的學(xué)生要求把實(shí)際問(wèn)題抽象成數學(xué)問(wèn)題,根據自己的理解寫(xiě)出推理過(guò)程。對一般學(xué)生要求口頭表達理由,并能說(shuō)明每一步的根據。)
教師帶領(lǐng),回顧反思本節課對知識的研究探索過(guò)程,小結方法及結論,提煉數學(xué)思想,掌握數學(xué)規律。
在教師引導下回憶前面知識,為探究新知識作好準備。議一議:
學(xué)生分小組進(jìn)行討論交流。受教師啟發(fā),從最少條件開(kāi)始考慮,一個(gè)條件;兩個(gè)條件;三個(gè)條件?經(jīng)過(guò)學(xué)生逐步分析,各種情況漸漸明朗,進(jìn)行交流予以匯總,歸納。
想一想:
對只給一個(gè)條件畫(huà)三角形,畫(huà)出的三角形一定全等嗎?
畫(huà)一畫(huà):
按照下面給出的兩個(gè)條件做出三角形:
。1)三角形的兩個(gè)角分別是:30°,50°
。2)三角形的兩條邊分別是:4cm,6cm
。3)三角形的一個(gè)角為30,一條邊為3cm
剪一剪:
把所畫(huà)的三角形分別剪下來(lái)。
比一比:
同一條件下作出的三角形與其他同學(xué)作的比一比,是否全等。學(xué)生重復上面的操作過(guò)程,畫(huà)一畫(huà),剪一剪,比一比。學(xué)生總結出:三個(gè)內角對應相等的兩個(gè)三角形不一定全等學(xué)生舉例說(shuō)明。
學(xué)生模仿上面的研究方法,獨立完成操作過(guò)程,通過(guò)交流,歸納得出結論。鼓勵學(xué)生自己舉出實(shí)例,體驗數學(xué)在生活中的應用。學(xué)生那出準備好的硬紙條,進(jìn)行實(shí)驗,得出結論:四邊形、五邊形不具穩定性。
學(xué)生練習。
學(xué)生在教師引導下回顧反思,歸納整理。
z+z平臺演示。
z+z平臺演示,教師加以分析。學(xué)生分組討論,師生互動(dòng)合作。
經(jīng)過(guò)對各種情況得分析,歸納,總結,對學(xué)生滲透分類(lèi)討論的數學(xué)思想。結論很顯然只需學(xué)生想像即可,z+z平臺輔助直觀(guān)演示。學(xué)生動(dòng)手操作,通過(guò)實(shí)踐、自主探索、交流,獲得新知。
初中數學(xué)課教學(xué)設計 10
一、教學(xué)目標:
1.經(jīng)歷探索二次函數與一元二次方程的關(guān)系的過(guò)程,體會(huì )方程與函數之間的聯(lián)系。
2.理解拋物線(xiàn)交x軸的點(diǎn)的個(gè)數與一元二次方程的根的個(gè)數之間的關(guān)系,理解何時(shí)方程有兩個(gè)不等的實(shí)根、兩個(gè)相等的實(shí)數和沒(méi)有實(shí)根。
3.能夠利用二次函數的圖象求一元二次方程的近似根。
二、教學(xué)重點(diǎn)
利用二次函數的圖象求一元二次方程的近似根。
教學(xué)難點(diǎn):
理解二次函數與x軸交點(diǎn)的個(gè)數與一元二次方程的根的個(gè)數之間的關(guān)系。
三、教學(xué)方法:
啟發(fā)引導合作交流
四:教具、學(xué)具:
課件
五、教學(xué)媒體:
計算機、實(shí)物投影。
六、教學(xué)過(guò)程:
[活動(dòng)1]檢查預習引出課題
預習作業(yè):
1.解方程:(1)x2+x-2=0; (2) x2-6x+9=0; (3) x2-x+1=0; (4) x2-2x-2=。
2.回顧一次函數與一元一次方程的關(guān)系,利用函數的圖象求方程3x-4=0的解。
師生行為:教師展示預習作業(yè)的內容,指名回答,師生共同回顧舊知,教師做出適當總結和評價(jià)。
教師重點(diǎn)關(guān)注:學(xué)生回答問(wèn)題結論準確性,能否把前后知識聯(lián)系起來(lái),2題的格式要規范。
設計意圖:這兩道預習題目是對舊知識的回顧,為本課的教學(xué)起到鋪墊的作用,1題中的三個(gè)方程是課本中觀(guān)察欄目中的三個(gè)函數式的變式,這三個(gè)方程把二次方程的根的三種情況體現出來(lái),讓學(xué)生回顧二次方程的相關(guān)知識;2題是一次函數與一元一次方程的關(guān)系的問(wèn)題,這題的設計是讓學(xué)生用學(xué)過(guò)的熟悉的知識類(lèi)比探究本課新知識。
[活動(dòng)2]創(chuàng )設情境探究新知
問(wèn)題
1.課本p16問(wèn)題。
2.結合圖形指出,為什么有兩個(gè)時(shí)間球的高度是15m或0m?為什么只在一個(gè)時(shí)間球的高度是20m?
。ńY合預習題1,完成課本p16觀(guān)察中的題目。)
師生行為:教師提出問(wèn)題1,給學(xué)生獨立思考的時(shí)間,教師可適當引導,對學(xué)生的解題思路和格式進(jìn)行梳理和規范;問(wèn)題2學(xué)生獨立思考指名回答,注重數形結合思想的滲透;問(wèn)題3是由學(xué)生分組探究的,這個(gè)問(wèn)題的探究稍有難度,活動(dòng)中教師要深入到各個(gè)小組中進(jìn)行點(diǎn)撥,引導學(xué)生總結歸納出正確結論。
二次函數y=ax2+bx+c的圖象和x軸交點(diǎn)的坐標與一元二次方程ax2+bx+c=0的根有什么關(guān)系?
二次函數y=ax2+bx+c的圖象和x軸交點(diǎn)
兩個(gè)交點(diǎn)
一個(gè)交點(diǎn)
沒(méi)有交點(diǎn)
教師重點(diǎn)關(guān)注:
1.學(xué)生能否把實(shí)際問(wèn)題準確地轉化為數學(xué)問(wèn)題;
2.學(xué)生在思考問(wèn)題時(shí)能否注重數形結合思想的應用;
3.學(xué)生在探究問(wèn)題的`過(guò)程中,能否經(jīng)歷獨立思考、認真傾聽(tīng)、獲得信息、梳理歸納的過(guò)程,使解決問(wèn)題的方法更準確。
設計意圖:由現實(shí)中的實(shí)際問(wèn)題入手給學(xué)生創(chuàng )設熟悉的問(wèn)題情境,促使學(xué)生能積極地參與到數學(xué)活動(dòng)中去,體會(huì )二次函數與實(shí)際問(wèn)題的關(guān)系;學(xué)生通過(guò)小組合作分析、交流,探求二次函數與一元二次方程的關(guān)系,培養學(xué)生的合作精神,積累學(xué)習經(jīng)驗。
[活動(dòng)3]例題學(xué)習鞏固提高
問(wèn)題:例利用函數圖象求方程x2-2x-2=0的實(shí)數根(精確到0.1)
師生行為:教師提出問(wèn)題,引導學(xué)生根據預習題2獨立完成,師生互相訂正。
教師關(guān)注:(1)學(xué)生在解題過(guò)程中格式是否規范;(2)學(xué)生所畫(huà)圖象是否準確,估算方法是否得當。
設計意圖:通過(guò)預習題2的鋪墊,同學(xué)們已經(jīng)從舊知識中尋找到新知識的生長(cháng)點(diǎn),很容易明確例題的解題思路和方法,這樣既降低難點(diǎn)且突出重點(diǎn)。
[活動(dòng)4]練習反饋鞏固新知一元二次方程一元二次方程ax2+bx+c=0ax2+bx+c=0的根兩個(gè)相異的實(shí)數根兩個(gè)相等的實(shí)數根沒(méi)有實(shí)數根根的判別式δ=b2-4acb2-4ac > 0b2-4ac = 0b2-4ac < 0
問(wèn)題:(1)p97.習題1、2(1)。
師生行為:教師提出問(wèn)題,學(xué)生獨立思考后寫(xiě)出答案,師生共同評價(jià);問(wèn)題(2)學(xué)生獨立思考后同桌交流,實(shí)物投影出學(xué)生解題過(guò)程,教師強調正確解題思路。
教師關(guān)注:學(xué)生能否準確應用本節課的知識解決問(wèn)題;學(xué)生解題時(shí)候暴露的共性問(wèn)題作針對性的點(diǎn)評,積累解題經(jīng)驗。
設計意圖:這兩個(gè)題目就是對本節課知識的鞏固應用,讓新知識內化升華,培養數學(xué)思維的嚴謹性。
[活動(dòng)5]自主小結,深化提高:
1.通過(guò)這節課的學(xué)習,你獲得了哪些數學(xué)知識和方法?
2.這節課你參與了哪些數學(xué)活動(dòng)?談?wù)勀惬@得知識的方法和經(jīng)驗。
師生活動(dòng):學(xué)生思考后回答,教師對學(xué)生的錯誤予以糾正,不足的予以補充,精彩的適當表?yè)P。
設計意圖:
1.題促使學(xué)生反思在知識和技能方面的收獲;
2.題讓學(xué)生反思自己的學(xué)習活動(dòng)、認知過(guò)程,總結解決問(wèn)題的策略,積累學(xué)習知識的方法,力求不同的學(xué)生有不同的發(fā)展。
[活動(dòng)6]分層作業(yè),發(fā)展個(gè)性:
1.(必做題)閱讀教材并完成p97習題21。2:3、4.
2.(備選題)p97習題21。2:5、6
設計意圖:分層作業(yè),使不同層次的學(xué)生都能有所收獲。
七、教學(xué)反思:
1.注重知識的發(fā)生過(guò)程與思想方法的應用
《用函數的觀(guān)點(diǎn)看一元二次方程》內容比較多,而課時(shí)安排只一節,為了在一節課的時(shí)間里更有效地突出重點(diǎn),突破難點(diǎn),按照學(xué)生的認知規律遵循教師為主導、學(xué)生為主體的指導思想,本節課給學(xué)生布置的預習作業(yè),從學(xué)生已有的經(jīng)驗出發(fā)引發(fā)學(xué)生觀(guān)察、分析、類(lèi)比、聯(lián)想、歸納、總結獲得新的知識,讓學(xué)生充分感受知識的產(chǎn)生和發(fā)展過(guò)程,使學(xué)生始終處于積極的思維狀態(tài)中,對新的知識的獲得覺(jué)得不意外,讓學(xué)生“跳一跳就可以摘到桃子”。
探究拋物線(xiàn)交x軸的點(diǎn)的個(gè)數與一元二次方程的根的個(gè)數之間的關(guān)系及其應用的過(guò)程中,引導學(xué)生觀(guān)察圖形,從圖象與x軸交點(diǎn)的個(gè)數與方程的根之間進(jìn)行分析、猜想、歸納、總結,這是重要的數學(xué)中數形結合的思想方法,在整個(gè)教學(xué)過(guò)程中始終貫穿的是類(lèi)比思想方法。這些方法的使用對學(xué)生良好思維品質(zhì)的形成有重要的作用,對學(xué)生的終身發(fā)展也有一定的作用。
2.關(guān)注學(xué)生學(xué)習的過(guò)程
在教學(xué)過(guò)程中,教師作為引導者,為學(xué)生創(chuàng )設問(wèn)題情境、提供問(wèn)題串、給學(xué)生提供廣闊的思考空間、活動(dòng)空間、為學(xué)生搭建自主學(xué)習的平臺;學(xué)生則在老師的指導下經(jīng)歷操作、實(shí)踐、思考、交流、合作的過(guò)程,其知識的形成和能力的培養相伴而行,創(chuàng )造“海闊憑魚(yú)躍,天高任鳥(niǎo)飛”的課堂境界。
3.強化行為反思
“反思是數學(xué)的重要活動(dòng),是數學(xué)活動(dòng)的核心和動(dòng)力”,本節課在教學(xué)過(guò)程中始終融入反思的環(huán)節,用問(wèn)題的設計,課堂小結,課后的數學(xué)日記等方式引發(fā)學(xué)生反思,使學(xué)生在掌握知識的同時(shí),領(lǐng)悟解決問(wèn)題的策略,積累學(xué)習方法。說(shuō)到數學(xué)日記,“數學(xué)日記”就是學(xué)生以日記的形式,記述學(xué)生在數學(xué)學(xué)習和應用過(guò)程中的感受與體會(huì )。通過(guò)日記的方式,學(xué)生可以對他所學(xué)的數學(xué)內容進(jìn)行總結,寫(xiě)出自己的收獲與困惑!皵祵W(xué)日記”該如何寫(xiě),寫(xiě)什么呢?開(kāi)始摸索寫(xiě)數學(xué)日記的時(shí)候,我根據課程標準的內容給學(xué)生提出寫(xiě)數學(xué)日記的簡(jiǎn)單模式:日記參考格式:課題;所涉及的重要數學(xué)概念或規律;理解得最好的地方;不明白的或還需要進(jìn)一步理解的地方;所涉及的數學(xué)思想方法;所學(xué)內容能否應用在日常生活中,舉例說(shuō)明。通過(guò)這兩年的摸索,我把數學(xué)日記大致分為:課堂日記、復習日記、錯題日記。
4.優(yōu)化作業(yè)設計
作業(yè)的設計分必做題和選做題,必做題鞏固本課基礎知識,基本要求;選做題屬于拓廣探索題目,培養學(xué)生的創(chuàng )新能力和實(shí)踐能力。
【初中數學(xué)課教學(xué)設計】相關(guān)文章:
初中數學(xué)課堂教學(xué)設計11-24
初中數學(xué)課堂教學(xué)設計02-13
數學(xué)課教學(xué)設計03-31
數學(xué)課程教學(xué)設計03-25
數學(xué)課堂教學(xué)設計03-10
數學(xué)課程教學(xué)設計09-28
數學(xué)課堂教學(xué)設計09-28
初中數學(xué)課教學(xué)反思02-18