高一數學(xué)教案:對數函數
教學(xué)目標:
1.進(jìn)一步理解對數函數的性質(zhì),能運用對數函數的相關(guān)性質(zhì)解決對數型函數的常見(jiàn)問(wèn)題.
2.培養學(xué)生數形結合的思想,以及分析推理的能力.
教學(xué)重點(diǎn):
對數函數性質(zhì)的應用.
教學(xué)難點(diǎn):
對數函數的性質(zhì)向對數型函數的演變延伸.
教學(xué)過(guò)程:
一、問(wèn)題情境
1.復習對數函數的性質(zhì).
2.回答下列問(wèn)題.
(1)函數y=log2x的值域是 ;
(2)函數y=log2x(x≥1)的值域是 ;
(3)函數y=log2x(0
3.情境問(wèn)題.
函數y=log2(x2+2x+2)的定義域和值域分別如何求呢?
二、學(xué)生活動(dòng)
探究完成情境問(wèn)題.
三、數學(xué)運用
例1 求函數y=log2(x2+2x+2)的定義域和值域.
練習:
(1)已知函數y=log2x的值域是[-2,3],則x的范圍是________________.
(2)函數 ,x(0,8]的值域是 .
(3)函數y=log (x2-6x+17)的值域 .
(4)函數 的值域是_______________.
例2 判斷下列函數的奇偶性:
(1)f (x)=lg (2)f (x)=ln( -x)
例3 已知loga 0.75>1,試求實(shí)數a 取值范圍.
例4 已知函數y=loga(1-ax)(a>0,a≠1).
(1)求函數的`定義域與值域;
(2)求函數的單調區間.
練習:
1.下列函數(1) y=x-1;(2) y=log2(x-1);(3) y= ;(4)y=lnx,其中值域為R的有 (請寫(xiě)出所有正確結論的序號).
2.函數y=lg( -1)的圖象關(guān)于 對稱(chēng).
3.已知函數 (a>0,a≠1)的圖象關(guān)于原點(diǎn)對稱(chēng),那么實(shí)數m= .
4.求函數 ,其中x [ ,9]的值域.
四、要點(diǎn)歸納與方法小結
(1)借助于對數函數的性質(zhì)研究對數型函數的定義域與值域;
(2)換元法;
(3)能畫(huà)出較復雜函數的圖象,根據圖象研究函數的性質(zhì)(數形結合).
五、作業(yè)
課本P70~71-4,5,10,11.
【高一數學(xué)教案:對數函數】相關(guān)文章:
人教版高一數學(xué)必修1說(shuō)課稿 對數函數及其性質(zhì)11-02
《對數函數》教學(xué)反思04-19
《對數函數》課件設計05-08
對數函數說(shuō)課稿11-04
高一作文:走進(jìn)高一02-16